mercredi 15 janvier
Mise à jour
mercredi 24 juillet 2024
Accueil > Équipes scientifiques > Nanophysique et Surfaces (Nanophys) > Recherche > Nano-optique sous pointe > Plasmonique sous pointe > Scanning Probe Plasmonics
Leader : Elizabeth Boer-Duchemin
Participants : Eric Le Moal, Gérald Dujardin, Georges Raseev
Postdoc : Aakansha Suchitta
PhD Student : Elham Fakhrzadeh
Past Contributors : Geneviève Comtet (DR), Yang Zhang (Post-doc), Damien Canneson (Post-doc), Jean-François Bryche (Post-doc), Tao Wang (PhD), Benoit Rogez (PhD), Shuiyan Cao (PhD), Moustafa Achlan (PhD), Delphine Pommier (PhD), Zélie Hufschmitt (PhD)
Our goal is to realize and exploit electrical nanosources of photons and plasmons. Towards this aim, we have developed an experimental apparatus consisting of a scanning tunneling microscope (STM) coupled to an inverse optical microscope. The inelastic tunnel current of the STM may electrically and locally excite surface plasmons on the metal nanostructured sample. The resulting emission is collected by the microscope objective.
Techniques : STM - AFM - Optical microscopy and spectroscopy
News— Can the plasmon resonance of a nanoparticle be measured using a scanning probe microscope ? Zapata-Herrera et al, Phys. Rev. B 109, 155433 (2024) |
Highlights
article : D. Pommier, Z. Hufschmitt, C. Zhang, Y. Lai, G. Dujardin, E. Le Moal, C. Sauvan, J.-J. Greffet, Jianfang Wang, and Elizabeth Boer-Duchemin, “Nanoscale Electrical Excitation of Surface Plasmon Polaritons with a Nanoantenna Tunneling Junction”, ACS Photonics 10(8) 2641–2649 (2023) |
A new probe of the photonic LDOS
While the scanning tunneling microscope (STM) is a well-known tool for the investigation of the local electronic density of states (e-LDOS), can it also be used to study the electromagnetic local density of states (EM-LDOS) ? To answer this question, we use the STM to locally excite the plasmonic modes of a gold triangular platelet. We then measure the spectra and energy-filtered images of the radiative decay of these modes. By comparing our results to electron energy loss spectroscopy (EELS) measurements on similar nanoparticles and to calculations, we show that the light emitted from the STM-nanosource is indeed related to the radiative contribution of the EM-LDOS. Thus, the scanning tunneling microscope offers an extremely attractive method to locally, and eventually simultaneously, probe the atomic, electronic, and photonic structure of a nano-object.
article : S. Cao, M. Zapata-Herrera, A. Campos, E. Le Moal, S. Marguet, G. Dujardin, M. Kociak, J. Aizpurua, A. G. Borisov, and E. Boer-Duchemin, “Probing the Radiative Electromagnetic Local Density of States in Nanostructures with a Scanning Tunneling Microscope”, ACS Photonics 7 (5), 1280–1289 (2020)
Optical mode’s dispersion relation at a glance
A new single-image acquisition technique for the determination of the dispersion relation of the optical modes of a plasmonic multilayer stack is introduced. The optical modes are electrically excited using the STM tip and their energy-momentum dispersion relation is determined from the angle-resolved optical spectrum of the resulting light.
article : S. Cao, M. Achlan, J.-F. Bryche, Ph. Gogol, G. Dujardin, G. Raşeev, E. Le Moal, and E. Boer-Duchemin, “An electrically induced probe of the modes of a plasmonic multilayer stack”, Opt. Express 27 (23), 33011-33026 (2019)
Electrical light beams on design
A very simple and broadband optical antenna, consisting of a single elliptical slit etched in a gold film, is used to electrically generate light beams in controlled directions, which are determined by the eccentricity of the ellipse.
article : S. Cao, E. Le Moal, Q. Jiang, A. Drezet, S. Huant, J.-P. Hugonin, G. Dujardin, and E. Boer-Duchemin, “Directional light beams by design from electrically driven elliptical slit antennas”, Beilstein J. Nanotechnol. 9, 2361-2371 (2018), pdf
k-space optical microscopy, revisited
An exhaustive study of the effects and artefacts by which the image is formed in optical microscopy of the Fourier plane, on periodic samples. These artifacts, used to exceed the diffraction limit, can be exploited for nano-positioning and autofocus applications in light microscopy..
article : J.-F. Bryche, G. Barbillon, B. Bartenlian, G. Dujardin, E. Boer-Duchemin, and E. Le Moal, “k-space optical microscopy of nanoparticle arrays : Opportunities and artifacts”, J. Appl. Phys. 124, 043102 (2018), featured in Scilight, pdf, suppl. mat.
Make plasmonic lenses resonate ! The unique combination of scanning tunneling microscopy (STM) and angle-resolved optical spectroscopy is used to probe the spectral response of a plasmonic lens. Simple design rules for optimized light beaming from plasmonic lenses with the smallest possible footprint are proposed, in the view of their integration with electronics into devices.
article : S. Cao, E. Le Moal, F. Bigourdan, J.-P. Hugonin, J.-J. Greffet, A. Drezet, S. Huant, G. Dujardin, and E. Boer-Duchemin, “Revealing the spectral response of a plasmonic lens using low-energy electrons”, Phys. Rev. B 96, 115419 (2017), pdf, suppl. mat.
SPP beams from plasmonic crystals. Surface plasmon polariton (SPP) beams with an in-plane angular spread of 8° are produced by electrically exciting a 2D plasmonic crystal using a scanning tunneling microscope (STM). The plasmonic crystal consists of a gold nanoparticle (NP) array on a thin gold film on a glass substrate and the inelastic tunnel electrons from the STM provides a localized and spectrally broadband SPP source. Surface waves on the gold film are shown to be essential for the coupling of the local, electrical excitation to the extended NP array, thus leading to the creation of SPP beams.
article : D. Canneson, E. Le Moal, S. Cao, X. Quélin, H. Dallaporta, G. Dujardin, and E. Boer-Duchemin, “Surface plasmon polariton beams from an electrically excited plasmonic crystal”, Opt. Express 24(23), 26186-26200 (2016)
![]() article : B. Rogez, S. Cao, G. Dujardin, G. Comtet, E. Le Moal, A. Mayne, and E. Boer-Duchemin, "The mechanism of light emission from a scanning tunnelling microscope operating in air”, Nanotechnology 27(46), 465201 (2016) |
![]() article : E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle”, Phys. Rev. B 93, 035418 (2016), pdf |
![]() article : B. Rogez, R. Horeis, E. Le Moal, J. Christoffers, K. Al-Shamery, G. Dujardin, and E. Boer-Duchemin, “Optical and Electrical Excitation of Hybrid Guided Modes in an Organic Nanofiber–Gold Film System”, J. Phys. Chem. C 119 (38), 22217–22224 (2015) |
![]() article : T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, "Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope", Phys. Rev. B 92, 045438 (2015), pdf |
![]() article : T. Wang, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, "Temporal coherence of propagating surface plasmons", Opt. Lett. 39, 6679 (2014) |
![]() article : T. Wang, E. Boer-Duchemin, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, and S. Huant, “Plasmon scattering from holes : from single hole scattering to Young’s experiment”, Nanotechnology 25(12), 125202 (2014), arXiv : 1401.2002 |
![]() article : S. Cao, E. Le Moal, E. Boer-Duchemin, G. Dujardin, A. Drezet, S. Huant, "Cylindrical vector beams of light from an electrically excited plasmonic lens", Appl. Phys. Lett. 105, 111103 (2014), pdf ; conference proceeding : S. Cao, M. Lequeux, E. Le Moal, A. Drezet, S. Huant, G. Dujardin, E. Boer-Duchemin, "Using a plasmonic lens to control the emission of electrically excited light", Proc. SPIE 9884, Nanophotonics VI, pp.98841Y (2016), pdf |
![]() article : B. Rogez, H. Yang, E. Le Moal, S. Lévêque-Fort, E. Boer-Duchemin, F. Yao, Y.-H. Lee, Y. Zhang, D. Wegner, N. Hildebrandt, A. Mayne, G. Dujardin, “Fluorescence lifetime and blinking of individual semiconductor nanocrystals on graphene”, J. Phys. Chem. C 118, 18445 (2014) |
![]() article : E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, G. Dujardin, "An electrically excited nanoscale light source with active angular control of the emitted light", Nano Lett. 13, 4198 (2013) |
![]() article : Y. Zhang, E. Boer-Duchemin, T. Wang, B. Rogez, G. Comtet, E. Le Moal, G. Dujardin, A. Hohenau, C. Gruber, and J. R. Krenn, "Edge scattering of surface plasmons excited by scanning tunneling microscopy", Opt. Express 21(12), 13938 (2013) |
![]() article : T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope”, Nanotechnology 22, 175201 (2011) |
Dans la même rubrique :