

Structural Characterisation of Photoproducts by Vibrational Spectroscopy: Combining UV and IR Lasers in a Ion Trap.

D. Scuderi², V. Lepère¹, A. Bouchet¹, G. Piani¹, K. Le Barbu-Debus¹, A.Zehnacker-Rentien¹

¹Institut des Sciences Moléculaires d'Orsay (ISMO), UMR8214, Université Paris Sud, 91405, Orsay Cedex, France ²Laboratoire de Chimie Physique, UMR 8000, Université Paris Sud, 91405, Orsay Cedex, France

Principle : Tandem MS³ mass spectrometry coupled with laser photofragmentation

Studied systems: Cinchona alkaloid (quinine derivatives) and their protonated dimers

Pseudo-enantiomers

CdH⁺ \rightarrow 136⁺ + 159 Hydrogen loss and C₈C₉ cleavage Role of the $\pi\sigma^*$ state

M=294

UV fragmentation of the cinchonidine protonated dimer Cd_2H^+ m/z 589

- UV photo-fragmentation results to different fragments from those formed by collision-induced dissociation or IRMPD
- The photo-products contains CdH⁺
- Photodissociation sensitive to chirality
- (Scuderi et al. J. Phys. Chem. A 2010)

IRMPD spectrum of the UV photofragment m/z 453

Proposed mechanism

Coupled hydrogen and proton transfer within the dimer and cleavage of the C_8C_9 bond

Structures of the radical compatible with the experiment (DFT b97-d/TZVPP) (Scuderi et al. J. Phys. Chem. Letters 2014)

Conclusions and perspectives

Coupling these two techniques provides a new tool for the study of photo-fragmentation mechanisms by probing the structure of the UV photo-fragments. Extension to other systems showing specific fragmentation scheme in the UV, like protonated peptides. Role of stereochemistry and chirality in progress