Photoréactivité du cyanoacétylène HC₃N piégé en matrice : vers des données d'intérêt astrophysique

R. Kołos¹, M. Turowski¹, M. Gronowski¹, S. Douin², S. Boyé-Péronne² et C. Crépin² ¹Institute of Physical Chemistry of the Polish Academy of Sciences, Warsaw, Poland ²Institut des Sciences Moléculaires d'Orsay, CNRS & Université Paris-Sud, France

INTRODUCTION

ICHE

Le cyanoacétylène (HC₃N) est une molécule de première importance d'un point de vue astrophysique. En effet, ses différents isomères (HCCNC ou HNCCC), le radical (C₄N) dont il est à l'origine ainsi que ses ions (HC₃NH⁻ ou C₃N⁻) jouent un rôle primordial dans la chimie de différents milieux extraterrestres comme les nuages interstellaires, les enveloppes circumstellaires, les comètes ou l'atmosphère dense de Titan, plus gros satellite de Saturne. Les anions de la série C_{2n+1}N semblent particulièrement intéressants à la lumière de la détection récente par radioastronomie des espèces isoélectroniques de la série HC_{2n}.

Nous avons donc mené une étude concernant la photochimie du **cyanoacétylène** isolé en matrice cryogénique de gaz rare soit par photolyse UV, soit par décharge. Nous avons observé différentes luminescences de longue durée de vie émanant de différents **produits de photolyse** inconnus. Nous avons pu identifier la molécule C_6N_2 résultant probablement d'une association de 2 radicaux C_3N , la molécule C_4N_2 produite par association des 2 radicaux CN et C_3N , et l'espèce HC_3N apparaissant après interaction de C_3H , et l'anion C_3N .

HC₃N est ensemencé dans une matrice de gaz rare (T~10 K) à raison de (1:500)

1^{ère} méthode

- irradiation @ 193 nm (ArF laser) ou 248 nm (KrF laser) → photolyse + luminescence
 irradiation UV par laser à excimère ou lampe D₂ → produits formés *in situ* et stabilisés dans la matrice 2^{mm} méthode
- CWRD (Cold Window Radial Discharge) [R. Kolos, Chem. Phys. Lett. 247 (1995)] décharge → nouveaux produits Analyse

- spectrofluorimètre ou laser UV → luminescence dispersée et spectre d'excitation de luminescence

<u>PRODUITS DE PHOTOLYSE EN MATRICE → VERS DES CHAINES PLUS LONGUES</u>

Ces travaux sont soutenus par les programmes Franco-Polonais - CNRS/PAN No.19501, Polonium No. 7064, PICS No. 4717 - et par le ministère polonais « Science & Higher Education grants No. 3 T09A 077 27 and N N204 152 036 Yves Bénilan and Marie-Claire Gazeau (Laboratoire Interuniversitaire des Systèmes Atmosphériques, Créteil) sont remerciés pour la synthèse de HC,N. Des expériences on tété effectuées au CLUPS (Centre Laser de l'Université Paris-Sud), merci à Michel Broquier et Christophe Jouvet pour leur aide.