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Abstract

Many aspects of intense-field molecular dynamics rely on the concept of res-

onances. The chapter gives a thorough review of these aspects, bringing out

the specificity of laser-induced resonances, in particular those defined in the

Floquet or dressed molecule picture. The role of these resonances in the time-

resolved dynamics of molecules subjected to an intense, ultrafast laser pulse is

discussed and basic mechanisms of molecular fragmentation and its control are

reviewed. We discuss how a thorough interpretation of two-colour XUV + IR

pump-probe experiments on the dissociative ionization of H2 can be made in

terms of adiabatic vs. non-adiabatic resonance transports (i.e. laser-induced

time evolutions) and in terms of field-induced processes such as Bond-Softening

(BS) and Vibrational Trapping (VT), associated with the Floquet representa-

tion or the Dynamical Dissociation Quenching (DDQ) effects associated with

a time-dependent quasi-static representation. Another application of the con-

cepts of laser-induced resonances, and of their adiabatic evolution, is devoted

to laser control strategies based on Zero-Width Resonances (ZWR) and Excep-

tional Points (EP), the approach of which in laser parameter space corresponds

to the coalescence of two laser-induced resonances. We illustrate how the con-

cept of ZWR can be useful for the molecular cooling problem. We then show
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how advantage can be taken of resonance coalescence at an EP to devise new

laser control strategies pertaining to vibrational energy transfer processes.
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1. Introduction

The detailed description of the interactions between a molecule and a strong

electromagnetic field provides the key for the interpretation of laser-induced

and laser-controlled photochemical reactions [1]. Not only can structural and

dynamical properties of molecules involved in such a reaction be analyzed or the

nature and the role of transient species be probed, but the reaction itself can

be optimally controlled by using appropriate sources of radiation. Intense laser

fields apply forces to molecules that are strong enough to produce important

distortions and offer the possibility to control both internal (total and partial

dissociation rates as well as fragment kinetic and angular distributions) and

external motions (angular positioning of the molecule with respect to the laser

polarization vector). Resonances play an important part in the theoretical un-

derstanding of a wide variety of laser induced molecular processes, ranging from

dynamical interpretations of photofragmentation spectra[2, 3] to the depiction

of basic mechanisms used as ingredients in laser control of reactivity[4, 5, 6].

These unstable states in the molecular continuous spectra are characterized by

quantized complex energies, resulting from their outgoing asymptotic behavior

(Siegert boundary conditions[7]). Their imaginary parts are inversely propor-

tional to their lifetimes. Several techniques have so far been developed for their

accurate calculation by solving close-coupled differential equations, with appro-

priate boundary conditions[4, 8]. In the context of intense laser fields, these

equations describe nuclear motions on multiphoton field-dressed electronic po-

tentials of the Floquet Hamiltonian[2, 3, 9]. Such laser induced potentials,

apart from accommodating resonances, also lead to a clear understanding of

basic mechanisms. Among them, bond softening or vibrational trapping in

the Above Threshold Dissociation (ATD) regime[3], acting in an antagonistic

manner[5], open the way to efficient and robust control scenarios (reactivity,

alignment/orientation, purification, vibrational transfer). These mechanisms

have experimentally confirmed counterparts in the time domain and may consid-

erably affect the wave packet dynamics when referring to short pulse durations:
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barrier lowering and Dynamical Dissociation Quenching (DDQ)[10, 11, 12],[13].

Highly-nonlinear field-induced barrier lowering or suppression and stabiliza-

tion (trapping or quenching) mechanisms both in the Visible-Ultra-Violet (Vis-

UV)[3] and the Infra-Red (IR)[10, 11, 12] frequency regimes underly chemical

bond softening or hardening processes, respectively. Their interplay through

the adequate adjustment of laser characteristics such as laser frequency, ampli-

tude, phase, polarization, and temporal shape, provides interesting novel con-

trol opportunities[5]. In the presence of strong fields, resonances also show

highly non-linear features. The widths increase with the field intensity in a

non-perturbative way (in the cases of shape resonances) but, in some circum-

stances and more unexpectedly, they may saturate and even decrease (the cases

of Feshbach resonances). The decrease is such that for some values of the laser

parameters (frequency and intensity) one can reach strictly zero width, a coun-

terintuitive situation where a molecule irradiated by a strong field becomes sta-

ble. A so called bound state in a continuum or a Zero-Width Resonance (ZWR)

is obtained[14, 6]. For other choices of field parameters, one can realize a coa-

lescence of two resonances, one of the shape type, the other of Feshbach type,

as a so-called Exceptional Point (EP)[15] is reached[16]. ZWRs and EPs lead

to very interesting control issues, involving molecular cooling and vibrational

population transfer strategies[6, 16].

The present chapter reviews these aspects of intense-field molecular dynam-

ics and discusses their pertinence to the detailed interpretation of two-colour

dissociative ionization experiments and the laser-control theory. The chapter is

organized as followed. The theory of laser-molecule interactions is presented in

Section 2, starting from a general multicharged system considered in a semiclas-

sical field description. The Hamiltonian of the laser-driven system is given in

the length gauge[1, 17, 18, 19]. The Section continues with a thorough analysis

of multichannel field-dressed molecular models within the Born-Oppenheimer

approximation[20] (for the molecular part) and the Floquet formalism[9, 21]

(for the radiative part). Section 3 is devoted to numerical methodologies for

solving coupled equations describing the dynamics of a laser-driven two-channel
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(two-electronic-state) molecule, either in a time independent frame, where em-

phasis is placed on field-induced resonances, or in a time dependent context,

highlighting time-resolved features. Basically, the numerical techniques that

are retained are the Fox-Goodwin propagator[8] using complex rotation[22] of

the spatial coordinate (time independent approach), or the split-operator for-

mula coupled to Fast Fourier Transform algorithms[23] adequately modified to

take advantage of Volkov type solutions[24] in asymptotic regions (time depen-

dent approach). Dynamical processes with their underlying mechanisms and

control strategies are presented in Section 4.

As a first application of the theory, concepts and methodologies of sections

2 and 3, we discuss the dissociative ionization dynamics of the molecular ion

H+
2 under two-colour XUV + IR pump-probe ultrafast, intense laser excita-

tions. In Section 5 the results of wavepacket dynamics simulations, done within

a theory/experiment collaboration[25, 26], are compared to experimental data,

aiming at a thorough interpretation in terms of resonances and basic mech-

anisms. In one series of experiments using IR pulses that are shorter than

the vibrational period of H+
2 , de-phasing and re-phasing of the vibrational wave

packet that is formed in H+
2 upon ionization of the neutral molecule by the XUV

pulse are observed. This observation is interpreted in terms of a laser-molecule

synchronization similar to that of the DDQ mechanism[10]-[12]. In experiments

where the duration of the IR pulse exceeds the vibrational period of H+
2 , a pro-

nounced dependence of the H+ kinetic energy distribution on XUV-IR delay is

observed, that can be explained in terms of the adiabatic propagation of the

H+
2 wave packet and the bond-softening mechanism on field-dressed potential

energy curves.

The second application, considered in Section 6, is devoted to laser control

strategies based on Zero-Width Resonances and Exceptional Points[27]. A semi-

classical model helps in determining, for a given wavelength, the laser intensity

at which a ZWR is produced. The ZWR is shown to be useful for vibrational

purification processes and thus ultimately for molecular cooling control. Finally,

it is also shown how an appropriate choice of laser parameters may provoke the
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approach of an Exceptional Point leading to the coalescence of two resonances

(complex eigenenergies and wavefunctions). We show how advantage can be

taken of such a situation in devising innovative laser control strategies pertain-

ing to vibrational energy transfer processes.

2. General Theory of Laser-Molecule Interactions

2.1. Molecular Hamiltonian in the Presence of a Laser Field

Many forms of the Hamiltonian operator describing a system interacting with

a radiation field are currently in use[18, 19, 1, 4]. These are defined within either

of two descriptions: One is fully quantized and treats both the laser field and the

molecular system quantum mechanically. The other is semiclassical and assumes

at the outset a classical field while the charged particles are treated quantum

mechanically. We recall here the expression of the Hamiltonian of a laser-driven

molecule written in the semiclassical description; this will serve to lay the ground

work for the construction of the models encountered in the subsequent Sections.

It is to be recalled also that many equivalent forms of the radiative interaction

exist, corresponding to different choices of the electromagnetic field’s gauge.

We will systematically refer to the so-called Coulomb length-gauge in writing

the interaction between a charged particle of a molecule and a radiation field.

Also, only electric dipole interactions are considered within the so-called long-

wavelength approximation.

2.2. Multichannel Molecular Models

For a complete treatment of a laser-driven molecule, one must solve the

many-body, multidimensional TDSE. This represents a tremendous task and di-

rect wavepacket simulations of nuclear and electronic motions under an intense

laser pulse is presently restricted to a few bodies (at most three or four) and/or

to a model of low dimensionality[28]. For a more general treatment, an ap-

proximate separation of variables between electrons (fast subsystem) and nuclei

(slow subsystem) is customarily made, in the spirit of the Born-Oppenheimer
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approximation. To lay out the ideas underlying this approximation as adapted

to field-driven molecular dynamics, we will consider from now on a molecule

consisting of Nn nuclei (labeled α, β...) and Ne electrons (labeled i, j, ....), with

position vectors Rα and ri respectively, defined in the center of mass (rotating)

body-fixed coordinate system, in a classical field E(t) of the form E0f(t) cos(ωt).

The full semiclassical length-gauge Hamiltonian is written, for a system of elec-

trons and nuclei, as[4]:

H(t) = Hel(t) + TN − µN ({Rα}) ·E(t) (2.1)

with:

Hel(t) =
∑

i

p2
i

2m
+ V ({ri}, {Rα}) + e

∑
i

ri ·E(t) (2.2)

where TN denotes the kinetic energy and µN ({Rα} is the dipole moment oper-

ator associated with the nuclei. This gauge has the advantage of giving a simple

form for the close-coupled equations, as is clarified hereafter.

In the electronic Hamiltonian Hel(t), the potential function V ({ri}, {Rα}) com-

prises all Coulomb interactions between the charges, i.e. it is the sum of Ven,

the attraction between electrons and nuclei, Vee, the Coulomb repulsion be-

tween the electrons, as well as Vnn, the repulsion between the various nuclei

of the molecular system. The sum of V ({ri}, {Rα}) and the electronic kinetic

energy defines the field-free electronic Hamiltonian, H0
el:

H0
el =

∑
i

p2
i

2m
+ V ({ri}, {Rα}). (2.3)

Its eigenfunctions,

H0
elΞI({ri}; {Rα}) = εI({Rα})ΞI({ri}; {Rα}), (2.4)

which are supposedly orthonormal by construction, constitute a complete basis

in terms of which the total molecular wavefunction can be expanded:

Ω({ri}, {Rα}, t) =
∑

I

ΨI({Rα}, t)ΞI({ri}; {Rα}). (2.5)

It is to be noted that the dependence of the electronic basis wavefunctions

ΞI({ri}; {Rα}) on the nuclear coordinates {Rα} is a parametric one. Since
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the field-free electronic Hamiltonian is time independent, the basis set is inde-

pendent of time. Yet, the expansion coefficients ΨI({Rα}, t) in this basis are

time-dependent and have to obey the reduced coupled Schrödinger equations:

i~
∂ΨI({Rα}, t)

∂t
= [TN + εI({Rα})− µN ({Rα}) ·E(t)] ΨI({Rα}, t)

− E(t) ·
∑

J

〈ΞI |(−e
∑

i

ri)|ΞJ〉ΨJ({Rα}, t) +
∑

J

CI,JΨJ({Rα}, t), (2.6)

where CI,J are non-adiabatic coupling operators, the exact form of which de-

pends on the choice of nuclear coordinates. When the field is turned off, (i.e.

E(t) = 0), neglect of the non-radiative (i. e.non-adiabatic) coupling terms on

the third line of this equation yields the celebrated Born-Openheimer (BO)

approximation[20]: Since no coupling then exists any longer between the various

ΨI ’s, the expansion of Eq. (2.5) reduces to a single term denoting an approxi-

mate separation of nuclear and electronic variables. While the electronic part is

described by Eq. (2.4), an effective Schrödinger equation describes the nuclear

motions viewed as occurring on a single potential energy surface (PES), a sin-

gle electronic channel, described by the electronic energy εI({Rα}) which now

plays the role of a potential energy function. In field-free molecular dynamics,

the neglect of non-adiabatic couplings is usually justified, at least in part, by

the disparity between the nuclear and the electronic masses. Here, their neglect

is justified by the observation that they are dominated by the strong couplings

between the electronic states or channels as induced by the intense laser field.

Thus neglecting these non-radiative couplings (the last sum in Eq. (2.6)) to

concentrate on field-induced effects, we obtain

i~
∂ΨI({Rα}, t)

∂t
= [TN + εI({Rα})− µN ({Rα}) ·E(t)] ΨI({Rα}, t)

−E(t) ·
∑

J

〈ΞI |(−e
∑

i

ri)|ΞJ〉ΨJ({Rα}, t). (2.7)

This is the start of the construction of multichannel models of laser-driven

molecules. In practice, one restricts to a finite number, Nch, of electronic states,

selected on the basis of physical relevance and Eq. (2.7) defines an Nch-channel

molecular model system. The ’electronic’ Hamiltonian is, in this model, de-

9



scribed by the operator

Hel({Rα}, t) =
∑
I,J

[εI({Rα})δIJ −E(t) · µIJ({Rα})]|ΞI〉〈ΞJ|, (2.8)

where

µIJ({Rα}) = 〈ΞI |(−e
∑

i

ri)|ΞJ〉 (2.9)

is the transition dipole moment between the field-free electronic states | ΞI〉 and

| ΞJ〉. In matrix form, Hel is represented by

W̃({Rα}; t) =


ε1 − µ11 ·E(t) −µ12 ·E(t) .. .. ..

−µ21 ·E(t) ε2 − µ22 ·E(t) −µ23 ·E(t) .. ..

.. −µ32 ·E(t) ε3 − µ33 ·E(t) −µ34 ·E(t) ..

.. .. .. .. ..


(2.10)

and, gathering the nuclear amplitudes ΨI({Rα}, t) into a column vector

Ψ({Rα}, t), Eq. (2.7) reads:

i~
∂Ψ({Rα}, t)

∂t
=

[
TN1 + W̃({Rα}; t)

]
Ψ({Rα}, t). (2.11)

2.3. Floquet Theory

When the external field is a continuous wave (cw) field,

E(t) = E0 cosωt (2.12)

the various Hamiltonians given above, in eq.(2.1), (2.2) or in eq.(2.11), are

time-periodic of period T = 2π/ω, i.e. H(t + T ) = H(t). Owing to this time-

periodicity, the Floquet theorem[21] is applicable to the TDSE associated with

that Hamiltonian. We recall here the main concepts of Floquet theory as applied

to the Schrödinger equation

i~
∂ | Ψ(t)〉

∂t
= H(t) | Ψ(t)〉, (2.13)

for any of the time-periodic Hamiltonians refered to above (specialization to a

specific form of this Hamiltonian will be made later). Floquet theorem states

that this TDSE admits solutions of the form:

| ΨE(t)〉 = e−i Et
~ | ΦE(t)〉, (2.14)
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with | ΦE(t+T )〉 =| ΦE(t)〉, which constitute a complete basis for a full descrip-

tion of the dynamics1. Introduction of the Floquet form into the wave equation

produces for | ΦE(t)〉 the equation:

[H(t)− i~
∂

∂t
] | ΦE(t)〉 = E | ΦE(t)〉. (2.15)

The operator acting on | ΦE(t)〉 is called the Floquet Hamiltonian,

HF (t) = H(t)− i~
∂

∂t
, (2.16)

and the time in this is to be treated as an additional dynamical variable so that

Eq. (2.15) determines eigenvalues and eigenstates of the Floquet Hamiltonian in

an extended space, the direct product of the usual molecular Hilbert space and

the space of periodic functions of t ∈ [0, T ]. This extension of the Hilbert space

can be made somewhat more transparent by introducing a new time-like vari-

able, to be distinguished from the actual time variable t. This new time variable

can be defined through the arbitrary phase of the continuous (periodic) field, as

done in [29, 30]. A variant of the idea is found in the (t,t′) method developped

by Moiseyev et al. [31] and applied to the photodissociation of H+
2 [32, 33]. We

will continue with the more traditional and simpler formulation of Floquet the-

ory here, as this is sufficient to bring out ideas of laser-induced resonances in

the dressed molecule picture.

In all strong-field molecular dynamics problems, the Hamiltonian H(t) can be

split into a time independent part, denoting the field-free molecule, and a time

dependent one representing the matter-field interaction:

H(t) = H0 + V (t). (2.17)

The time-periodic part | ΦE(t)〉 of the Floquet eigenvector and the time de-

pendent interaction ‘potential’2 V (r, t) can be written in the form of a discrete

1The theorem applies to scattering and bound states with a real energy and to resonance

states with a complex energy. When the energy is quantized (bound and resonance states), it

is called a quasi-energy, for reasons to be developped below.
2To fix the idea, we shall henceforth consider the case this interaction term depends on r,

as in the length gauge Hamiltonian.
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Fourier series,

V (r, t) =
∑

n

Vn(r)einωt, (2.18)

and:

| ΦE(t)〉 =
∑

n

| Un〉einωt (2.19)

with n going from −∞ to +∞. In the case of eq.(2.19) for the Floquet wave-

function | ΦE(t)〉, we are in fact expanding it in the complete orthonormal

basis of periodic function of the new dynamical variable t, einωt. Substituting

these expansions into the Floquet eigenvalue equation (Eq. (2.15)) results in an

elimination of the time variable to give a system of coupled time independent

equations:

[H0 + V0(r)] | Un〉+
∑

n′ 6=n

Vn−n′ (r) | Un′ 〉 = (E − n~ω) | Un〉. (2.20)

In the case of a matter-field interaction of the form

V (r, t) = −µ(r) ·E(t) = −1
2
µ(r) ·E0[eiωt + e−iωt], (2.21)

as found in Eqs.(2.1) and (2.2) with a cosine electric field, V (t) has only two

non-zero Fourier components:

V±1 = −1
2
µ(r) ·E0 (2.22)

so that the coupled equations (2.20) reduce to

(H0 + n~ω) | Un〉 −
1
2
µ(r) ·E0(| Un+1〉+ | Un−1〉) = E | Un〉 (2.23)

A number of basic properties of the Floquet states | ΨE(t)〉 can be infered easily

from Eqs (2.14) and (2.19). First, if Ei is a quasi-energy, i.e. an eigenvalue of

HF associated with an eigenstate | ΦEi(t)〉, then

Ei,k = Ei + k~ω. (2.24)

is also an eigenvalue, i.e. it also belongs to the Floquet energy spectrum. The

eigenvector associated with this eigenvalue is obtained by multiplying | ΦEi
(t)〉
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with eikωt as can be verified by substituting the new periodic function eikωt |

ΦEi
(t)〉 into Eq. (2.19). Accordingly, the Fourier indices n labeling the com-

ponents | Un〉 are shifted by −k, i.e | UE+k
n 〉 =| UE

n−k〉. Thus quasi-energies

are defined modulo an integer multiple of ~ω, and should therefore be identified

by at least two indices, as evoked in Eq. (2.24): Together with i, the index k

defines a quasi-energy level in a definite Brillouin zone, which is specified by k

alone. This is in complete analogy with the situation met in crystals, where the

Floquet theorem also applies, but this time as a result of the spatial periodicity

of the potential, and is called Bloch theorem[34]. It is known that the Floquet

states belonging to a single zone constitute a complete basis set[35], in the case

where the quasi-energy spectrum is discrete. Extension to cases involving con-

tinua and resonance states can be made heuristically by invoking a continuum

discretization procedure.

Second, the properties of Floquet eigenstates are such as to produce a very

simple stroboscopic way of following the motion of a general wave-packet of the

time dependent laser-driven system: Consider the evolution operator U(t+T, t)

between times t and t+ T . Starting at time t from a Floquet state

| Ψi(t)〉 = e−i
Eit

~ | Φi(t)〉, (2.25)

we have after time T :

U(t+ T, t) | Ψi(t)〉 = e−i
Ei(t+T )

~ | Φi(t+ T )〉 = e−i
Ei(t+T )

~ | Φi(t)〉. (2.26)

In particular if t = 0:

U(T, 0) | Ψi(0)〉 = e−i
EiT

~ | Φi(T )〉 = e−i
EiT

~ | Φi(0)〉. (2.27)

This shows that the time evolution is exactly like that of a stationary state

of a time independent Hamiltonian, provided the probing is limited to T , or

any multiple of T . Since | Ψi(0)〉 is equal to | Φi(0)〉, Eq. (2.27) also shows

that exp(−iEiT/~) is an eigenvalue of the evolution operator over one period

of the field. Suppose now that we wish to follow the development in time of an

arbitrary initial wave packet | η(0)〉. We can expand it over the complete set of
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Floquet eigenfunctions of a given Brillouin zone at time t = 0:

| η(0)〉 =
∑

i

| Φi(0)〉〈Φi(0) | η(0)〉. (2.28)

At time t = NT , the wave packet has evolved into:

| η(NT )〉 =
∑

i

e−i
EiNT

~ | Φi(0)〉〈Φi(0) | η(0)〉. (2.29)

This relation emphasizes again the similarity between the properties of Floquet

eigenfunctions and the ordinary stationary eigenfunctions (see [36] for more

details). Although it has been proven here only for stroboscopic times, Eq. (2.29)

may be written more generally by changing NT into an arbitrary t.

2.4. Dressed Molecule Picture and Laser Induced Resonances

Without the coupling term linear in µ in Eq. (2.23), the components | Un〉

would solely be governed by the field-free Hamiltonian H0 augmented by n~ω,

the energy of n-photon. One can take Eq. (2.23) as defining the dressed molecule

picture within this semiclassical description, and | Un〉 is the amplitude (wave-

function) of the n-photon dressed (diabatic) channel. The field interaction

(1/2)µ(r)·E0 couples these diabatic channel amplitudes together. Diagonalizing

the potential part of the full Floquet Hamiltonian matrix defined by Eq. (2.23),

i.e. containing these diabatic-channel couplings, one gets an equivalent picture,

called the adiabatic Floquet scheme, with channel crossings in the diabatic rep-

resentation becoming avoided crossings where adiabatic amplitudes | U (adia)
n 〉

are now coupled together by strongly localized field-induced non-adiabatic cou-

plings.

To illustrate the above concepts, we consider a two-electronic-state molecular

model system, corresponding to keeping just two terms in the sum on the right-

hand side (rhs) of Eq.(2.5), so that Ψ({Rα}, t) in Eq.(2.11) is a two-dimensional

column vector and W̃({Rα}; t), a (2×2) matrix. A representative of this class of

models is the one-electron diatomic H+
2 molecule described in a two-electronic-

state approximation.
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Using the notations defined in Section (2.2), the position vectors in the center

of mass frame of the two nuclei in this specific case are R1 = +R/2, R2 =

−R/2, where R is the relative position vector, and considering the system in

interaction with a linearly polarized field, the full molecular Hamiltonian for

this one-electron system is:

H(t) = H0
el + TN + eE0 cos(ωt)ε · r (2.30)

with H0
el defined by

H0
el =

p2

2m
+ V (r,R), (2.31)

V (r,R) being the sum of Coulomb interactions among the three particules.

The two relevant electronic states of the H+
2 molecule are the ground state of

symmetry 2Σ+
g , described by the wavefunction

Ξ1(r,R) = 1sσg(r,R), (2.32)

and the first excited state that is accessible via an electronic dipole allowed

transition, of symmetry 2Σ+
u , and described by3

Ξ2(r,R) = 2pσu(r,R). (2.33)

The R-dependent electronic energies of these two states are noted εg(R) and

εu(R). Note that, if the z axis of the molecule-fixed center of mass coordinate

system is chosen to lie along the internuclear axis, then these depend explicitly

on R = |R| only, as indicated. The time dependent statefunction ΩL(r,R, t) of

the system expanded in the truncated basis of the two electronic wave functions

is then

ΩL(r,R, t) = Ψ1(R, t)Ξ1(r,R) + Ψ2(R, t)Ξ2(r,R). (2.34)

With this two-component state, applying the Floquet ansatz consists of writing Ψ1(R, t)

Ψ2(R, t)

 = e−i Et
~

 Φ1(R, t)

Φ2(R, t)

 (2.35)

3Note that in designating the molecular orbitals representing these two electronic states as

above, the 1s and 2p symbols refer to the united-atom limit.
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and the general Floquet eigenvalue equation (2.15) takes on the following par-

ticular form

i~
∂Φ1(R, t)

∂t
= [TN + εg(R)− E]Φ1(R, t)− E0µgu(R) cos θ cos(ωt)Φ2(R, t)

i~
∂Φ2(R, t)

∂t
= [TN + εu(R)− E]Φ2(R, t)− E0µug(R) cos θ cos(ωt)Φ1(R, t)

(2.36)

where θ is the angle between the molecular internuclear axis and the direction

of the polarization vector ε and µgu(R) is the matrix element:

µgu(R) = 〈Ξ1(r,R)|(−ez)|Ξ2(r,R)〉r = µug(R). (2.37)

defined in the body-fixed system. The subscript r is to recall that the integration

implied in this matrix element is made only over the electronic coordinates. Note

that diagonal matrix elements of −ez vanish for a homonuclear system such as

H+
2 , owing to the inversion symmetry of the field-free molecule. We note that, in

a complete treatment of the laser-driven dynamics, the relative nuclear kinetic

energy operator TN in Eq.(2.36) is the sum of a radial and an angular parts, TR,

Tθ,ϕ, respectively as exhibited and defined in Eqs.(3.17)-(3.19). However, the

essential features of the Floquet representation of this two-state system are best

illustrated by considering a one-dimensional, rotationless molecule, for which

TN = TR and cos θ = 1 corresponding to the situation of a perfect alignment of

the molecular axis along the laser polarization. We will briefly discuss the role

of rotations,i. e. of angular dynamics within this Floquet scheme in section 4.

Returning to Eq.(2.36), each of the functions Φk(R, t), k = 1, 2, being

time-periodic, it is expressible in the form

Φk(R, t) =
+∞∑
−∞

einωtΨk,n(R), (2.38)

corresponding to the general Eq.(2.19), i.e. Ψk,n, k = 1, 2, are the two compo-

nents of | Un〉 in the two-state field-free electronic basis. Introduction of these

developments into the above coupled equations (2.36) leads to:

[TN + εg(R) + n~ω] Ψ1,n −
E0

2
µgu(R)[Ψ2,n−1 + Ψ2,n+1] = EΨ1,n
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[TN + εu(R) + n~ω] Ψ2,n −
E0

2
µgu(R)[Ψ1,n−1 + Ψ1,n+1] = EΨ2,n (2.39)

This pair of equations, which in fact represents an infinite set of coupled equa-

tions as n varies from −∞ to +∞, corresponds to the general Eq. (2.23). In

this specific case, the radiative couplings follow a parity selection rule that arises

from the fact that µkk = 0, k = 1, 2 ↔ g, u, in the model considered here. Once

a parity of the Fourier indices (‘numbers of photons’) n associated with channel

1 is chosen, the nuclear amplitudes Ψ1,n supported by this channel (dressed by

‘n photons’) are coupled only to amplitudes Ψ2,n′ supported by channel 2 with

a number n′ of opposite parity. The type of dressed picture that emerges from

this is illustrated in Fig. 4.2, for the dressing by a λ = 532 nm field of a rota-

tionless two-state H+
2 molecule, with even values of n associated with channel

1, and odd ones with channel 2. The corresponding R-dependent channel ener-

gies, i.e. εg(R) and εu(R), dressed by n~ω according to this n-parity convention,

exhibit, at specific R, crossings with |∆n| = 1, 3, 5, .. that have been interpreted

as corresponding to local electronic transitions 2Σg −→ 2Σu with absorption of

1, 3, 5, ... photons respectively.

If we ignore the nuclear kinetic operator TN in Eq. (2.39), then the resulting

equation defines Floquet eigenstates of the two-state electronic system consid-

ered at a fixed R. These local electronic Floquet eigenstates and energies can

thus be obtained simply by diagonalizing the local electronic Floquet Hamil-

tonian matrix. The results are shown in dashed lines on Fig. 4.2. Doing this

leaves the problem of determining the full molecular Floquet states unsolved

however, as the electronic Floquet Hamiltonian matrix and its eigenvectors do

not commute with the nuclear kinetic energy operator. At best, the local elec-

tronic Floquet eigenvectors can be taken as a new basis, an adiabatic one, on

which the total molecular Floquet states can be expanded. The channel ampli-

tudes in this basis are coupled by kinetic non-adiabatic couplings, arising from

the commutator between TN and Hel
F (R).

The dressed channels represented by the potentials traced in solid lines in

Fig. 4.2 are coupled to each other by diabatic couplings that increase linearly
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with E0, i.e. with the field intensity, and that are also delocalized in R, as, for

H+
2 , µgu diverges as R/2. In contrast, non-adiabatic couplings in the dressed

adiabatic picture decrease as E0 increases, and are localized in the neighbour-

hood of avoided crossings created at the one-, three-, five-,.., photon crossings of

the diabatic dressed scheme. This confers to the adiabatic representation some

advantages in interpretations, i.e. in the qualitative readings of calculated dy-

namics. In particular, laser-induced resonances, i.e. metastable Floquet states,

of two sorts can clearly be identified on the adiabatic dressed potential energy

curves of Fig. 4.2. These are defined by the avoided crossing created at the

intersection of the εg + n~ω and the εu + (n − 1)~ω curves, for any n, i.e. the

one-photon crossing. The lower of the pair of adiabatic potentials associated

with this avoided crossing supports resonances of shape type, while the upper

one supports resonances of Feschbach type.

Shape resonances are responsible for the so-called Bond-Softening dissocia-

tion process for resonances lying below the barrier created at the one-photon

crossing, and for Above-The-Barrier dissociation in the opposite situation. Fes-

hbach resonances give rise to the Vibrational Trapping phenomenon, also called

Bond-Hardening process. The positions and the widths of these resonances

vary with the field intensity. In particular, the widths of shape and Feshbach

resonances vary in opposite directions as the field strength increases: While

shape resonances become more and more unstable, the barrier to dissociation

of the lower adiabatic potential being lowered with increasing E0, Feshbach res-

onances are stabilized in the same conditions, as non-adiabatic couplings that

are responsible for their decays into the continua in which they are embedded

are lowered as E0 increases.

2.5. Adiabatic Time Development

2.5.1. Adiabatic Floquet Representation:

Rigorously, the above Floquet representation is valid only when the field is

periodic. Imagine now that the field amplitude E0 in Eq.(2.12) carries a time de-

pendence that denotes a slow modulation of the cosine field which oscillates with
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a frequency ω in the UV-Vis spectral range. Without the amplitude modulation,

the dynamics under the UV-Vis field is well captured by the Floquet represen-

tation. If the amplitude modulation is slow, the Floquet ansatz can still be

applied to the TDSE with this locally periodic field, albeit approximately. This

can be seen as followed: Within some time interval [t−∆t, t+∆t], ∆t = TL/N

around t, (TL = 2π/ω is the laser-field frequency), with N large enough so that

the variations of the pulse enveloppe over 2∆t can be neglected, but still ensur-

ing that some oscillations of the high frequency carrier wave do occur during

that time-interval, the laser field E(t) can be considered of constant amplitude,

i.e. it can be written E(t) = E0 cosωt with E0 := E0(t). The eigenstates of the

instantaneous Floquet Hamiltonian H
{t}
F (t) = H{t}(t) − i~ ∂

∂t associated with

this local periodic field defines a basis for the expansion of the actual wavepacket

of the system as it evolves during this time-interval from some initial condition.

If this initial condition, which is nothing else than the wavepacket evolved up

to time t −∆t, projects unitarily, (or at least mainly) on a single state of this

local basis, i.e. a single Floquet state, then it will remain in this state during

the whole time-interval. Imagine now that the laser pulse duration is divided

up into Nt time slices of width ∆tn centered on t = tn, n = 0, 1, 2, ....Nt. If the

actual time-evolution across the full pulse width is essentially the transport of

a single Floquet resonance state or a group of quasi-degenerate Floquet states

from one time-slice to another, then the Floquet dynamics is said adiabatic.

This definition represents the extension, to Floquet states, of the concept of

adiabatic transport of eigenstates of time-dependent Hamiltonian as expressed

by the celebrated adiabatic theorem[37]. Its precise formulation within Floquet

theory has been given in different forms by many authors[38, 39, 30, 31, 40].

We will not be concerned with these formal aspects, but only use the concept of

Floquet adiabatic or non-adiabatic dynamics mostly for interpretative purposes.

In the adiabatic situation, not only do resonances’ properties vary smoothly in

time, as the slowly-varying field envelope modulates the adiabatic energy barrier

height and width, and the energy gap at the main (one-photon) avoided cross-

ing of the dressed potentials, but resonances (or degenerate groups of these)
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are also transported smoothly, in a one-to-one manner, from one time-slice to

another. Thus, if the field-molecule interaction is switched on smoothly, then

an initial eigenstate of the field-free molecule will be transported adiabatically

onto a single resonance and will remain in this resonance, (whose properties

change slowly with time), at all subsequent times, until the end of the pulse.

We will also encounter situations where the field-molecule interaction is switched

on suddenly, at a time within the pulse width, when a noticeable field-intensity

is already attained, defining resonance states that already differ markedly from

field-free molecular eigentstates. Although the preparation of the molecule in an

instantaneous Floquet wavepacket is sudden in this case, subsequent evolution

of each component of this wavepacket, i.e. of Floquet resonances, may be adia-

batic within the remaining part of the laser pulse. In all instances, whenever the

transport of Floquet resonance states is adiabatic, their time-integrated widths

are meaningful as a measure of their decay probabilities. Much of the discussion

to be found in the next sections are based on this adiabatic Floquet picture. The

understanding of the distinction between adiabatic and non-adiabatic Floquet

dynamics is central to the interpretation of recent experimental findings in the

ultra-fast pump-probe spectroscopy of dissociative ionization of dihydrogen (see

section 5).

Care must be exercised to distinguish the concept of adiabatic Floquet dy-

namics introduced here, which refers to an adiabatic time-evolution, or to the

slow variations of the Floquet basis with time, from the concept of adiabatic

representation defined in the previous section, which refers to the slow variations

of the electronic Hamiltonian (Floquet or not) with respect to nuclear motions,

(i.e. the non-commutativity of the electronic Hamiltonian Hel and the nuclear

kinetic energy operator TN ). Where confusion is possible and to be avoided,

we shall refer to this concept of adiabaticity related to the B.O approximation

as the R-adiabaticity, while adiabaticity in actual time-evolution will be termed

t-adiabaticity. Non-adiabatic effects in time evolution are due to a fast varia-

tion of the (Floquet) Hamiltonian with time, causing Floquet states to change

rapidly in time, to the extent that in going from one time-slice to another, a
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resonance may be projected onto many new resonances as well as diffusion (con-

tinuum) states [52], and the Floquet analysis breaks down completely. We will

see in section 5 how one can take advantage of such effects to image nuclear

motions by an ultrafast pump-probe process.

2.5.2. Adiabaticity In Non-Floquet Representations:

An instance in which the Floquet representation breaks down, in the sense

of becoming impractical, even though the field is genuinely periodic, is when

the field frequency is small, as compared with the Bohr frequency of the first

electronic transition at small R. The one-photon crossing is then brought to a

large distance and Floquet blocks and zones are so close to each other that res-

onance overlaps are numerous. In such a case, it is more appropriate to discuss

the dynamics in terms of the adiabatic transport of instantaneous eigenstates of

the time-dependent (non-Floquet) Hamiltonian of the molecule, as this varies

slowly in time[41, 10]. The diagonalization of the electronic part Hel(R, t) of

the time-dependent Hamiltonian in Eq.(2.30) and (2.36) yields potential energy

curves which fluctuate in time as shown in Figure 4.1. The lower adiabatic

surface is now characterized by a barrier that moves in time, both in position

and in height and width. Note that these potential energy surfaces refer to an

electronic representation that is both adiabatic with respect to time and with

respect to nuclear motions, reflecting the two time scales, that of electronic

motions, much faster, and that of the slower field oscillations that would be

comparable also to the nuclear motions’ time-scale. The lower adiabatic poten-

tial energy curve in Figure 4.1 supports instantaneous nuclear eigenfunctions

which correspond to resonances of the shape type and, if desired, the nuclear

actual wavepacket dynamics may be described and discussed in terms of these

resonances. However, due to the comparable time-scales of the field oscillations

and the nuclear motions, it is more useful to analyse these directly in terms of

the synchonization of the time-dependent wavepacket with the moving barrier

found on this lower potential energy curve. This is the framework of the analysis

originally given[10] to the DDQ effect in the laser-driven dissociation of small
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diatomic molecules, as reviewed in section 4.

3. Numerical Methodologies

As seen above, laser assisted and controlled photofragmentation dynamics

can conceptually be viewed in two different ways. The time dependent view-

point offers a realistic time resolved dynamical picture of the basic processes

that are driven by an intense, short laser pulse. For pulses characterized by a

long duration, (as compared to the time scales of the dynamics), the laser field

can be considered periodic, allowing the (quasi-)complete elimination of the

time variable through the Floquet formalism, giving rise to a time independent

viewpoint. This formalism not only offers a useful and important interpretative

tool in terms of the stationary field dressed molecular states, but also provides

a more direct and accurate way to calculate the resonances involved in vari-

ous laser-induced processes. We first review, in the next subsection (3.1), the

computational method to actually calculate Floquet resonances in this time-

independent approach as applied to the dressed H+
2 (rotationless) molecule.

The methodology used for the calculations of wavepackets in the complemen-

tary time dependent approached will then be reviewed in subsection (3.2).

3.1. Time Independent Calculations of Floquet Resonances

We present the numerical methodology for solving Eqs. (2.39), resulting

from the application of the Floquet formalism to the semiclassical Hamiltonian

of the molecule plus field system. For this purpose, we present Eqs. (2.39) in

the generic form of a system of a finite number of closed-coupled equations

[TN1 + ε(R))]Ψ(R) = E1Ψ(R), (3.1)

where, with p two-channel Floquet blocks being kept to give N = 2p coupled

dressed channels, ε(R) is the (N × N) potential matrix appearing on the left-

hand-side (lhs) of Eqs. (2.39), with elements

[ε]n,n′ = εκ(R)+n~ω−E0

2
µug(R)[δn′,n−1+δn′,n+1], κ =

 g ↔ n = 2k

u↔ n = 2k + 1
,
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and 1 is the (N × N) unit matrix. The method is presented for the one-

dimensional version of these coupled equations as befit the calculations of laser-

induced resonances in a diatomic (rotationless) molecule perfectly aligned along

the laser polarization.

Molecular channels appearing in Eqs. (2.39) belong to one of the following

two classes. For a given energy E, if E− εg(u)(R)− (N−n)~ω goes to a positive

limit En = E − (N − n)~ω as R → ∞, then the channel is open. This means

that the two nuclei can separate from each other, with a relative kinetic energy

En = ~2k2
n/2M, kn being the associated wave number given by:

kn =
1
~
[2M(E − (N − n)~ω)]

1
2 , (3.2)

If the limit is negative, then the channel is closed and the nuclei remain bounded

to each other. The form of the solutions of the coupled equations, Eqs. (2.39) or

Eq.(3.1) depends on the imposed boundary conditions. Consider first the case

where there is at least one open channel. Scattering boundary conditions consist

of imposing, for an open channel n, a combination of incoming (exp[−iknR]) and

outgoing (exp[+iknR]) waves, while all closed channel functions are constrained

to vanish asymptotically. In the case of a molecular dissociation, because of

the strong interatomic repulsion prevailing at short internuclear distances, all

channel functions must decay to zero as R −→ 0. Scattering solutions then

exist with a real arbitrary energy above a certain threshold. They describe for

example a situation where the nuclei approach each other with a given num-

ber of photons in the field, and then separate from each other with the same

number (elastic scattering), or a different number (inelastic scattering) of pho-

tons. The scattering situation is however not the type of problem of interest in

this review. When the molecule is supposed to be initially in a state belonging

to a closed channel (e. g. a vibrational state of the ground electronic state),

half-collision (or Siegert-type) boundary conditions are more appropriate. We

then impose to the amplitudes associated with open channels to be asymptot-

ically of the outgoing type only[7], while closed channel functions must vanish

asymptotically as in the scattering case. This type of solution is only possible if
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the (quasi-)energy is quantized and complex, of the form E = ER − iΓ/2. Such

an energy characterizes a resonance. Note that the closed or open character

of a given channel as defined above must be decided using the real part of the

energy. The total rate of dissociation is given by K = Γ/~. This can be seen

from the behaviour of the associated Floquet wave function as imparted by the

exponential factor containing its quasi-energy. Since a probability is calculated

with the squared modulus of the wave function, this factor produces:

| exp[−i
Et

~
]|2 = exp[−Γt

~
] = exp[−Kt]. (3.3)

Siegert boundary conditions also imply that the open-channel wave numbers are

complex, since Eq. (3.2) is now used with a complex energy. Thus kn can be

written as

kn = kn0 − ikn1, (3.4)

with both kn0 and kn1 positive. Since the wave function in open channel n goes

asymptotically as exp[iknR], we have:

exp[iknR] = exp[ikn0R] exp[kn1R]. (3.5)

which diverges at infinity. The interpretation of this fact is the following: when

measuring the outgoing flux at a distant position from the source, we are in fact

interrogating the system at some time in the past. Since the source is decaying,

the more distant we are from it, the more active was the source at the time of

emission.

It is possible to implement explicitly Siegert boundary conditions in the

determination of the multichannel wave function. An alternative approach is

to transform the reaction coordinate R into a complex one R = ρ exp(iϑ)[22].

The complex wave number kn can also be written κ exp(−iβ) with β positive.

With this, the new channel function asymptotically goes to:

exp[iknR] = exp[iκρ exp(i(ϑ− β))] (3.6)

= exp[iκρ cos(ϑ− β)] exp[−κρ sin(ϑ− β)].
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If the condition 0 < (ϑ − β) < π is fulfilled, the second exponential factor

in the last form of exp[iknR] goes to zero as ρ = |R| −→ ∞. The channel

function then behaves as that of a bound state. It is also important to note

that this complex transformation of the coordinate does not affect the decreasing

asymptotic behavior and the square-integrability of a bound state wavefunction.

This means that any method available for bound state calculations can be used

for resonance calculations. A variant of the complex rotation method consists in

transforming the reaction coordinate only after some value, say R0. The form

given to the coordinate is then R0 + (R−R0) exp(iϑ). This procedure is called

exterior scaling[42, 43].

For the propagation of the multichannel wave function Ψ(R), in real or

complex-scaled coordinates, an efficient algorithm is furnished by the Fox-Goodwin-

Numerov method[8], [44], which results from a discretization of the differential

operator TN appearing in Eqs. (2.39). Given adjacent points R − h, R and

R + h on the grid, we define an inward matrix (labelled i) and an outward

matrix (labelled o) as:

Pi(R) = Qi(R+ h)[Qi(R)]−1. (3.7)

Po(R) = Qo(R− h)[Qo(R)]−1. (3.8)

where Qi(Qo) is a matrix of independent vector solutions of the coupled-channel

equations satisfying boundary conditions for inward or outward propagation

respectively. The Fox-Goodwin-Numerov method actually propagates these P

matrices on the grid. If R− h1, R and R+ h2 are three adjacent points on the

grid, either all real, or all complex or mixed, define the following (Numerov)

matrices:

α(R) = h2[1 +
1
12

(h2
1 + h1h2 − h2

2)(E1− ε(R))], (3.9)

β(R) = (h1 + h2)[1−
1
12

(h2
1 + 3h1h2 + h2

2)(E1− ε(R))], (3.10)

γ(R) = h1[1 +
1
12

(−h2
1 + h1h2 + h2

2)(E1− ε(R))]. (3.11)

Then, the propagation is done with the two equations:

Pi(R− h1)) = [β(R)−α(R+ h2)Pi(R)]−1γ(R− h1), (3.12)
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Po(R+ h2) = [β(R)−α(R− h1)P0(R)]−1γ(R+ h2). (3.13)

Let Rm and Rm + h be the two points chosen for the matching of the inward

and outward solutions. The matching condition has the form:

det|Pi(Rm)− (Po(Rm + h))−1| = 0. (3.14)

The fulfillment of Eq. (3.14) generates a complex energy if the inward matrix

incorporates outgoing boundary conditions (with a real coordinate), or bound

state boundary conditions (with a complex rotated coordinate).

Once the complex Floquet eigenenergy has been determined from an iter-

ative resolution of the implicit energy dependent Eq. (3.14), the multichannel

wavefunction written as a column vector Ψ(R) can be calculated at the match-

ing point because it satisfies the set of homogeneous linear equations:

[Pi(Rm)− (Po(Rm + h))−1]Ψ(Rm) = 0, (3.15)

The wavefunction at the other grid points can be obtained recursively from

Ψ(Rm) using:

Ψ(R+ h) = (Po(R+ h))−1Ψ(R)

Ψ(R− h) = (Pi(R− h))−1Ψ(R) (3.16)

3.2. Time Dependent Wavepacket Propagation

We now turn to the time dependent wavepacket calculations, i.e. to tech-

niques used for solving directly the nuclear TDSE (cf. Eq. (2.11)), which for a

diatomic multichannel molecule is:

i~
∂

∂t
Ψ(R, θ, ϕ; t) =

[
TR + Tθ,ϕ + W̃(R, θ; t)

]
Ψ(R, θ, ϕ; t), (3.17)

where R, θ, ϕ are the spherical coordinates of the internuclear vector R in the

laboratory frame. The kinetic energy operators in Eq. (3.17) are given by:

TR = − ~2

2M
∂2

∂R2
, (3.18)

Tθ,ϕ = − ~2

2MR2

{
1

sin θ
∂

∂θ
(sin θ

∂

∂θ
) +

1
sin2 θ

∂2

∂ϕ2

}
. (3.19)
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The potential energy part W̃(R, θ; t) is as defined in Eq. (2.10) for a general

N-channel system. We will consider the specific case of a two-channel system,

with the two coupled electronic states designated by g and u.

Eq. (3.17) is typically solved by writing

Ψ(R, θ, ϕ; t+ δt) = U(δt)Ψ(R, θ, ϕ; t)

= exp
[
− i

~
[TR + Tθ,ϕ + W̃(R, θ; t)]δt

]
×Ψ(R, θ, ϕ; t),

and by using a split-operator representation of the short-time propagator U(δt):

U(δt) = exp
[
− i

~
[TR + Tθ + W̃(t)]δt

]
= exp [− i

~
W̃δt/2] exp [− i

~
Tθ,ϕδt/2]

× exp [− i

~
TRδt] exp [− i

~
Tθ,ϕδt/2]

× exp [− i

~
W̃δt/2] +O(δt3).

All propagators appearing on the right-hand-side of Eq. (3.20) are treated

using the Feit-Fleck technique [23], except the one involving Tθ,ϕ, which is

approximated by Cayley’s formula [45]:

exp[− i

~
Tθ,ϕδt/2] = [1 + (

i

~
)Tθ,ϕδt/4]−1

×[1− (
i

~
)Tθ,ϕδt/4]

+O(δt3),

which maintains unitarity (Tθ,ϕ being self-adjoint) and is further implemented

in a way that avoids matrix inversion.

The exponential operator containing the potential energy is straightfor-

wardly evaluated in the coordinate representation. A prediagonalization of the

instantaneous multichannel potential matrix W̃(R, θ; t) is needed and natu-

rally brings one to the (both t− and R−) adiabatic representation described

in the previous section. Fourier-transform methodology [23, 46] and, for the

angular variables, a method employing either spherical harmonics basis-sets
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expansions[47] or grid techniques[45] are then used to represent the exponential

operators involving the radial and angular kinetic energies in Eq. (3.20). In

particular, the last reference gave a significantly improved grid approach with

an implementation of the above unitary Cayley scheme for Tθ,ϕ, combined with

a split operator technique using a cosine Fourier transform, resulting in a recur-

sion formula. Apart from avoiding the numerical instabilities associated with

the division by sinθ in this angular kinetic energy term, the major advantage of

this approach is the absence of matrix element evaluations and multiplications,

the computational task being basically fast Fourier transforms.

Until very recently the calculations of dissociation fragments’ kinetic energy

spectra involved wavepacket propagations over very large grids, during the total

pulse duration. A much restricted grid may be used if the wavepackets are

splitted into an internal and an asymptotic part[48]:

Ψj(R, θ; ti) = ΨI
j (R, θ; ti) + ΨA

j (R, θ; ti) (j = 1, 2) (3.20)

(I for inner and A for asymptotic). The inner part is calculated by the numer-

ical procedure described above using the restricted grid. As for the asymptotic

part, the angular kinetic energy operator Tθ,ϕ can be omitted thanks to the

R−2 factor it contains which tends to zero as R goes to infinity. The asymptotic

region, which is the support of ΨA
j , is also where the field-free potential energy

curves become degenerate and are flat, while the transition dipole moment be-

tween the two charge-resonant states goes as µ(R > RS) → 1
2eR. Because of

these asymptotic behaviours of the potential matrix, the asymptotic two-state

electronic system can be decoupled by an appropriate time-independent unitary

transformation. The resulting decoupled equations describing field-driven nu-

clear motions in the asymptotic region are formally analog to the ones describing

the motion of a free electron in an electric field, and admit Volkov-type analyt-

ical solutions[18]. This implies that, after Fourier transforming, the asymptotic

wavepackets ΨA
j can be propagated analytically, avoiding the use of an extended

grid, even during the field interaction[24, 49]

A much more detailed account for the split operator method and the accompa-
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gnying asymptotic analysis is given in [4].

4. Processes and Mechanisms for Molecular Fragmentations in IR

and UV-Vis Frequency Regimes

4.1. General Ideas

Many effects and non-linear processes induced by a laser field have been

uncovered through the study of the simplest molecular system, the one-electron

homonuclear diatomic H+
2 molecule. The scope of these findings is larger

though, as manifestations of these effects may be found in more complex molecules,

including polyatomic systems.

The nature of these effects, the concepts required for their understanding

depend on the spectral range to which the frequency of the laser field belongs.

Nowadays, modern laser technology gives access to a wide range of frequencies,

from Infra-Red (IR), to Visible (Vis), up to Ultra-Violet (UV) domains. Achiev-

able peak intensities (up to tens of TW/cm2) correspond to forces of the same

order or even larger than those of the Coulomb forces that ensured the cohe-

sion of stable molecular structures. Fields of such intensity can induce effects

that are basically of two types: multiphoton effects, i.e. molecular excitations

accompanying the absorptions and/or emissions of a finite number of photons,

and profound modifications of molecular internal force fields. These effects have

different consequences in terms of underlying mechanisms that can be exploited

in control problems, for exemple, depending on the frequency domain which is

adressed.

In the UV-Vis regime (wavelengths within 750nm to 40nm), the photon

energy (a few electron-volts) is resonant with electronic transitions at some par-

ticular molecular geometry. Typically a single photon brings enough energy for

the dissociation to occur, but due to the high intensity of the field, the molecule

continues to absorb photons above its dissociation threshold (multiphoton ATD

mechanism). The subsequent dynamics leads to fragmentation into different

channels characterized by different kinetic energies associated with the absorp-
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tions of different numbers of photons. As the photon frequency (larger than

5× 1014 Hz) is high as compared to that of molecular internal motions (vibra-

tion or rotation), the molecule feels a time-averaged strong radiative field that

modifies its field-free Coulomb force field. These modifications are well captured

by the dressed molecule picture associated with the Floquet representation.

They give rise to the softenings of some chemical bonds (barrier suppression,BS

mechanism), while others are hardened (confinement or vibrational trapping,

VT mechanism). New scenarios for the control of molecular reactivity can be

designed by exploiting the interplay between these antagonistic mechanisms.

In the IR regime (wavelengths within 750nm to 0.1cm), the photon energy

(less than one electron-volt) is typically resonant with nuclear vibrational mo-

tions. A single photon is not energetic enough to induce electronic excitation

and/or dissociation. These processes are highly multiphotonic, requiring the

accumulation of the energy of a large number of individual photons. In contrast

with the UV-Vis regime, the IR laser frequency (1014 Hz) being comparable to

internal vibrational frequencies, the molecule follows, in a time-resolved manner,

the oscillations of the electromagnetic field. When properly synchronized with

a vibrational mode, the laser can be used as a tool for controlling dissociation

through new bond-softening or stabilization mechanisms that are proper to the

IR frequency regime. Finally, it is worthwhile to note that IR laser frequen-

cies remain high with respect to rotational motions. This gives the possibility

of controlling the angular distributions of laser-driven molecules through time-

averaged pendular states which govern alignment dynamics.

4.2. A Simple Model System

The general ideas outlined above are best illustrated with the exemple of

electronic excitations and concomitant large-amplitude nuclear motions in the

molecular ion H+
2 under a UV-Vis and IR laser pulse. The two-channel model

introduced in section 2.4, which will be recalled briefly below, is of widespread

use for its ability to capture in its simplicity the essence of strong field molecular

dynamics. Furthermore, the discussion can be conducted by first considering a
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one-dimensional model (θ = 0) representing a strictly aligned (i.e. rotationless)

molecule. We thus solve the nuclear TDSE to generate wavepackets moving on

the Born-Oppenheimer potential energy curves associated with two electronic

states labeled g (ground, 2Σ+
g ) and u (excited, 2Σ+

u ),

i~
∂

∂t

 ψg(R, t)

ψu(R, t)

 = Ĥ

 ψg(R, t)

ψu(R, t)

 . (4.1)

where the Hamiltonian Ĥ is as given in Eq. (3.17) and involves a two-by-two

potential operator matrix which depend on the internuclear distance R and is

given by.

Ŵ (R, t) =

 εg(R) −E0f(t)µ(R) cosωt

−E0f(t)µ(R) cosωt εu(R)

 , (4.2)

where E0, f(t) and ω are respectively the maximum amplitude, temporal pulse

shape and carrier-wave frequency of a field explicitely taken as:

E(t) = E0f(t) cos(ωt+ δ). (4.3)

The molecular dipole moment µ, which is the transition dipole between states g

and u, does not contain any permanent part µ0 for this homonuclear ion and is

parallel to R. The polarizability α is not explicitely introduced as, for the in-

tensity range we are referring to, the model can be, within good approximation,

strictly limited to the lowest two BO states.

Using the wavepacket propagation methodology outlined in section 3.2, the

wavepacket components ψg,u are generated at a given time t, from some initial

state defined at t = 0, which will be specified later. Various observables can

be calculated from the wavepackets at the current time, among which the total

instantaneous probabilities for the ion to remain in bound vibrational states of

the ground electronic state, i. e.,

Pbound(t) =
∑

v

|〈v|ψg(t)〉|2 . (4.4)

The dissociation probability is then simply given by

Pdiss(t) = 1− Pbound(t). (4.5)
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Another observable of interest is the final probability distribution for fragments

specified by their momentum k and, in two-dimensional calculations that include

rotational motions, angular position θ:

P(k) =
∑

n=g,u

∣∣∣ψ̃A
n (k; t→∞)

∣∣∣2 , (4.6)

where ψ̃A
g,u represents the Fourier transform of the asymptotic-region wavepacket

components of the g and u channels respectively.

Figure 4.1: Nuclear probability distributions associated with the wavepacket supported by

the adiabatic channels W±(R, t) formed under a ω = 943.3 cm−1, I = 5× 1013 W/cm2 laser

pulse with δ = 0 on the left panel and δ = π/2 on the right panel. The wavepackets are taken

at four times within the first optical cycle: (a) t = 1/4T ; (b) t = 1/2T ; (c) t = 3/4T ; (d)

t = T .
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Figure 4.2: Field-dressed potential energy curves of H+
2 (λ = 532 nm), in the diabatic

(solid lines) and adiabatic (broken lines for I = 1013 W/cm2 and dotted lines for I =

5 × 1013 W/cm2) frames. Curve-crossing regions are outlined by rectangular boxes X1, X2,

and X3. The energies of the v = 2, 4, 5 vibrational levels are indicated by thin horizontal lines.

Figure 4.3: Three-dimensional graphs of adiabatic surfaces for I = 1013 W/cm2 in the region

of the X1 (a) or X3 (b) avoided crossings. The arrows give an illustration of the minimum

energy pathway on each surface.

4.3. Multiphoton Dissociation in the IR Regime

In the IR regime, the field amplitude varies typically over the same time

scale as molecular vibrational motions so that a synchronization between the
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nuclear motion and the laser oscillations is possible[10, 11] . This requires the

definition of a time t0 (or a related phase δ) when the field amplitude first

reaches its maximum after the promotion of the initial wavepacket onto the

excited electronic state,

cos [ω (t− t0)] = cos (ωt+ δ) . (4.7)

For t0 = δ = 0, the initial wavepacket is considered to be prepared instanta-

neously at maximum intensity. In contrast, if t0 is set equal to T/4 (T = 2π/ω),

corresponding to δ = π/2, the initial state preparation occurs at the start of an

optical cycle, i. e., at zero field intensity. The two situations result into com-

pletely different dynamics, the former leading to dissociation quenching, while

the latter is monitored by a barrier suppression mechanism. This distinction

can best be understood by viewing the dynamics as taking place on the time

dependent adiabatic potential surfaces W±(R, t) which arise from diagonalizing

the potential energy operator of Eq. (4.2).

Figure (4.1) illustrates the dynamics of W± and of the associated nuclear

probability distributions. For δ = 0 the field is at its peak intensity at t =

0, when the initial wavepacket is prepared on the inner repulsive edge of the

attractive potential W− (close to εg in this region). Only its tail penetrates the

gap region (R ∼ 4 a.u.) which, at that time, is widely open between W+ and

W−. At t = T/4, the wavepacket components reach the gap region with a gap

now closed due to the vanishing field amplitude, preventing thus any escape

towards the asymptotic region. At t = T/2, the wavepacket is reflected back

towards the inner region and the gap is open again but without any consequence

with respect to an eventual escape. During the next half cycle the wavepacket

motion follows the same pattern and all this leads to a stabilization of the system

with respect to dissociation, which is seen to be a consequence of the bound

vibrational motion being perfectly synchronized with the opening and closing

of the potential gap. This is the dynamical quenching mechanism (DDQ). A

completely different wavepacket motion is associated with the case δ = π/2.

Every time the wavepacket reaches the right end of the binding potential εg,
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the gap is open and permits the escape of an important part of the wavepacket

towards the asymptotic dissociative limit. This is the barrier lowering (and/or

suppression) mechanism.

It is worthwhile to note that the field-molecule synchronization can be achieved

by tuning the laser frequency and adjusting its intensity. This means that a

quantitative knowledge of δ is not necessary. In particular, a two-pulse (UV +

IR) scheme can be proposed with a given time delay. If an intense ultrashort

UV pulse is turned on at a definite time t0 after the onset of the long IR pulse, it

will instantaneously prepares well-aligned H+
2 ions from H2 in its ground state.

A variation of the frequency of the IR laser pulse would then allow the desired

synchronization to occur[12].

Full 2D calculations (including rotations) have shown that molecular align-

ment is not among the necessary conditions for DDQ to be sharply observed[12].

In the case where the molecule is allowed to rotate during its interaction with

the field, the efficiency of DDQ is only slightly affected. A control can thus be

exerted on the system by adequately combining the laser intensity (which con-

trols the position, the width, and the spatial spread of the gap) and frequency

(which controls the gap opening and closing motions’ period).

4.4. ATD Dynamics in the UV-Vis Regime

In the UV-Vis regime, the field oscillations are so fast as compared to nu-

clear motion that the molecular system only feels time-averaged radiatively-

dressed adiabatic potentials. A transparent multiphoton interpretation to be

made for the two non-linear mechanisms affecting the chemical bond (which are

the analogs of the barrier suppression and DDQ of the IR regime) results from

the Floquet expansion and time averaging of the molecule-plus-field Hamilto-

nian, valid for pulses long enough to lead to near periodic lasers. The relatively

large photon energy of a UV-Vis field not only matches the electronic transition

of the molecule in a modestly elongated configuration but also separates well the

Floquet blocks [(g, n);(u, n+1) with varying n] from each other. Only a few Flo-

quet blocks is actually needed (for a given intensity) for a converged calculation

35



on the network of field-dressed diabatic potentials (εl + n~ω) exhibiting one-,

three-photon curve crossings at short internuclear distances. This is to be con-

trasted with the case of an IR excitation for which the Floquet picture is rather

inappropriate, as one-photon crossings occur at large distances, close to the dis-

sociative limit, and a multitude of high-order crossings are densely produced in

the inner region of the molecular potentials. Figure (4.2) shows the field-dressed

potential energy curves involved in the two main Floquet blocks in the diabatic

and adiabatic representations, for a typical UV-Vis filed at λ = 532 nm. Recall

that the (R-)adiabatic representation, featuring avoided curve crossings, results

from the diagonalization of the radiative interaction at fixed molecule-field orien-

tations (θ = 0 or π, which maximizes the couplings) and varying R. Two strong

field intensities are considered, namely 1013 W/cm2 and 5 × 1013 W/cm2, at

a wavelength of 532 nm, corresponding to experimental conditions[50]. The

curve crossing regions upon which the interpretation of the dynamics rests are

indicated by rectangular boxes: X1 and X3 correspond to one-photon crossings,

between the dressed states |g, n > and |u, n − 1 >, and between |g, n − 2 >

and |u, n − 3 >, respectively, while X2 arises from the three-photon crossing

between the ground and the two-photon channels, and X3 between |g, n > and

|u, n− 3 >. Three initial vibrational states v are also shown at the level of the

X1 box, with energies above (v = 5) or below (v = 2) the laser-induced barrier

for both intensities or in the energy gap between the lower and upper adiabatic

channel (v = 4).

Looking more closely at box X1, it is seen that the lowering of the laser-

induced barrier at I = 5 × 1013 W/cm2 is such that H+
2 in a vibrational

state v ≥ 4 will dissociate almost exclusively by tunneling through the one-

photon Bond Softening (BS) channel and leads to low energy photons. This

mechanism has been abundantly discussed in the literature and experimentally

verified[3, 50, 51, 53, 54]. The counterpart of BS is the Vibrational Trapping

(VT) mechanisms the upper adiabatic channel may accommodate long-lived

resonances[55, 56]. In particular, a very narrow resonance (of zero width, in

a semiclassical estimate) may arise when a diabatic dressed vibrational level,
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defined on the lower diabatic dressed PES (εl + n~ω), is close to a level created

on the upper adiabatic PES[57]. Such coincidences may be obtained at will by

just properly adjusting the laser wavelength (i.e. the relative energy positioning

of the potentials) and intensity (i.e. the strength of the coupling)[55, 58]. When

the molecule is properly prepared (by an adiabatic excitation, using a pulse

with a sufficiently long rise time) in such a resonance state, good stabilization

is expected[56]. Early works even proposed an isotope separation scenario in a

H+
2 /D+

2 mixture based on this vibrational trapping mechanism[55]. The scheme

relies on the great sensitivity of the aforementioned diabatic-adiabatic level co-

incidences with respect to the laser and molecular characteristics. A coincidence

that has been obtained for a molecule-plus-field system would no longer hold

when one proceeds to an isotopic substitution, because of mass-related energy

shifts. A detailed account of this mechanism will be given in section 6. It is to

be emphasized that the two stabilization mechanisms in consideration, here and

in the previous subsection, have completely different origins: The DDQ effect

in the IR regime is based on a dynamical effect whereas the VT effect in the

UV-Vis regime is a pure stationary process. These basic mechanisms not only

help in controlling molecular dissociation and understanding fragments kinetic

energy distributions, but they can also be referred to for the interpretation of

angular distributions of fragments in the strong-field photodissociation process.

To this end, it would be necessary to relax the restriction to a one-dimensional

model and allow for rotational motion described by the angles θ and ϕ. In fact,

for a linearly polarized field, the time-dependent Hamiltonian has axial symme-

try and only the angular variable θ needs be considered explicitly. Figure (4.3)

presents 3D graphs of the (two-dimensional) adiabatic PESs in the region of the

X1 and X3 avoided crossings. Imagine an initial wavepacket prepared on the

short range repulsive limit of the surface pictured in Fig. (4.3(a)). It will be

propagated towards the X1 region where the adiabatic potential barrier height

is modulated by the angle-dependent laser-molecule coupling, i. e., to µE0 cos θ.

For a given field strength, this lowering is more pronounced for cos θ ∼ 1 (θ ∼ 0

or π). For cos θ ∼ 0 (θ ∼ π/2) the higher potential barrier is hardly pene-
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trable. Under the effect of the torque exerted by the laser on the molecule,

the wavepacket skirts around the potential barrier and follows the minimum

energy pathway of the dissociative valley (that is for directions close to θ = 0

or π) resulting in aligned fragments when the BS mechanism is operative[49].

Figure (4.3(b)) represents, in the X3 region, the adiabatic surface leading to

dissociation corresponding to the net absorption of two photons. To reach this

surface, a large portion of the initial wavepacket has to undergo a non-adiabatic

transition at X2. The non-adiabatic coupling responsible for the dissociation is

sharply peaked around the avoided crossing position X2 with a strength that

is much larger for θ ≈ π/2 (there is no coupling at θ = π/2) than for θ = 0 or

π[49]. The wavepacket prepared on this surface presents an angular distribution

more pronounced around θ ∼ π/2. Subsequent dissociation dynamics on this

surface also favors the θ ∼ π/2 direction as this corresponds to a potential val-

ley. Finally, less aligned fragments are expected when non-adiabatic transitions

are responsible for the dissociation of an initially trapped configuration.

We continue in the next two Sections with two separate applications of the

basic mechanisms discussed here: (i) A thorough interpretation of a recent

pump-probe study of the dissociative ionization of H2 and (ii) A study of control

scenarios for molecular cooling and vibrational population transfer using Zero-

Width Resonances (ZWRs) and the related concept of Exceptional Points (EPs).

5. XUV+IR Pump-Probe Spectroscopy of Molecular Dissociative Ion-

ization

5.1. Introduction

With recent advances in laser technology, in particular with the generation

of attosecond laser pulses as a spin-off of research on High-Harmonic generation

(HHG), the real-time imaging of ultrafast molecular phenomena has become

accessible. Just as femtosecond laser pulses led to the development of transition

state spectroscopy and femtosecond chemistry [59], the advent of attosecond

pulses [60] has given rise to endeavours where it is the even faster electronic
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motion that is probed in a time-resolved manner [61]. An important concern in

these experiments is the question as to which extent the structure and dynamics

of the molecule under investigation are influenced by the presence of the intense

infrared (IR) laser field that drives the high-harmonic generation process [62]. In

the previous section, we have evoked the use of an ultrafast UV or XUV (pump)

pulse to trigger the ionization of a molecule such as H2 within the width of a

longer IR (probe) pulse, which would cause the dissociation, or the vibrational

trapping, of the molecular ion depending on the delay between the two pulses

and the frequency of the IR pulse, in a possible direct experimental study of

the DDQ effects. A similar set of experiments has been performed recently, but

with the probe pulse being in the near IR rather (λ = 750 nm) for which the

Floquet dressed molecule picture still applies, so that instead of monitoring the

DDQ type control, these experiments rather map out the degree of adiabaticity

of the Floquet dynamics under the probe near-IR pulse (henceforth refered to as

the IR pulse). We now review these experimental results and the accompanying

theoretical interpretations[25],[26], and discuss the roles of different type of res-

onances associated with the Floquet representation in the very rich dynamics

reflected in these results.

5.2. Experimental context

Two experiments were performed using an extreme ultra-violet (XUV) at-

tosecond pump pulse, (~ω ' 35.eV ), which creates an initial vibrational wave

packet on the H+
2 , 140 as FWHM (1sσ+

g ) potential by means of a single photon

ionization of H2. This (XUV) pump pulse thus serves to accurately define the

time of ionization of the molecule, with respect to which subsequent dissocia-

tion of the H+
2 ion is clocked, with the initial H+

2 geometry reflecting that of

the neutral ground state. The two experiments differ primarily in terms of the

properties of the near IR field (λ = 750 nm) that is used. In one experiment,

henceforth called experiment A, the IR pulse is significantly shorter than the H+
2

vibrational period (7 fs Full-Width at Half Maximum [FWHM]). In contrast, in

experiment B, the duration of the IR laser pulse (35 fs FWHM) is comparable
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to (slightly longer) than the H+
2 vibrational period, meaning that the IR field

is present during the propagation of the wave packet before dissociation, which,

depending on the XUV-IR delay, τ , may or may not include the time at which

the ionization by the XUV took place. In both cases, this delay is defined as the

time separating the crest of the IR pulse from the peak of the XUV pulse, so

that τ > 0 denotes the situation where the XUV pulse precedes the IR pulse4.

Figure (5.1) shows a comparison of how the H+ fragment kinetic energy

(KE) distributions measured in experiments A and B varies as a function of the

delay τ . In experiment A, the yield of fragments with energies below 1.2 eV

exhibits a beating pattern with a main period of about 27 fs. A closer analysis

of this pattern, visible even at the most coarse-grained level, as obtained by

integrating the experimental H+ KE distribution over the energy range of 0-

1.2 eV, as shown in Figure (5.2), [panel (a) of this figure shows this integrated

signal as a function of τ , while panel (b) shows its Fourier transform], reveals

that the oscillatory signal arises from the beating of a number of frequencies

that are basically the Bohr frequencies between adjacent field-free vibrational

levels around v = 9. This experiment A thus seems to be imaging just the

vibrational content of the initial wavepacket. The results for experiment B,

where the IR pulse duration is somewhat longer than the vibrational period of

the H+
2 molecule, are radically different. In this case, the proton kinetic energy

distribution evolves smoothly as a function of τ . The most important feature in

this smooth τ -dependence is the red shift of the center of gravity of the spectrum

as τ increases past the interval denoting XUV-IR pulse overlap, to stabilize at

a low level of .25 eV , for all positive values of τ denoting the situation where

the IR pulse clearly follows the XUV pulse (τ > 20 fs). No oscillatory pattern

is seen in the experimental results for this case.

4Note that the IR pulse generated high harmonics that were used to make the attosecond

XUV pulses. As a consequence, in the case of the 35 fs IR field, one has a train of a finite

number of attosecond pulses serving as the XUV pump, rather than a single one. We will

ignore this distinction in the following.
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5.3. Theoretical Simulations

In order to simulate the experimental results, concentrating on the dissociation

of H+
2 after its preparation by the XUV pulse, the one-dimensional two-channel

model described in previous sections was used. We thus consider the H2 parent

molecule, originally in its ground vibrational and electronic state, to be ionized

by the XUV pulse at time t = 0 and that the ionization is merely a Franck-

Condon (FC) vertical promotion of the v = 0 vibrational state of the parent

molecule onto the ground electronic state |1sσ+
g 〉 of the molecular ion. Subse-

quent nuclear wavepacket motions then develop on the two electronic manifolds

of the molecular ion H+
2 , the ground state |1sσ+

g 〉 and the first excited elec-

tronic state |2pσ+
u 〉. The molecule is assumed to be aligned along the laser

polarization. This is justified not only by our wish to concentrate on the es-

sential feature of the dynamics, but also by the fact that experimentally, the

angle-resolved H+ detection allows one to selectively observe fragments along

the polarization axis, and it was found that none of the observations reported,

and summarized in Figure (5.1) depends very strongly on the ejection angle of

the H+ fragment with respect to the polarization axis. As for the results shown

in the preceding section, the wavepacket propagation procedure described in

section 3.2, but restricted to just the radial dimension, is used, and the proton

kinetic spectra is extracted from the relative momentum k distribution defined

in Eq.(4.6). The calculations are repeated for an extensive range of values of τ ,

(more details on the calculations can be found in [26]), and produced the results

shown in Figure (5.3), which displays the theoretical proton KE distributions

as a function of τ for the same IR pulse durations as in experiments A and B,

at intensities of 1× 1013 W/cm2 and 3× 1013 W/cm2 respectively, which corre-

sponds to the estimated peak intensities in the experiments. The calculations

give spectra with much better detailed structures than the experiment. However

the main observations of the experimental Figure (5.1), as detailed above, are

well brought out: In the case of the shorter IR pulse (experiment A), the same

beating pattern, though much better resolved, is found when the KE spectrum

is viewed as a function of the delay τ . Again this is in marked contrast with the
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results of the calculations for the longer IR pulse, which give a much smoother

variation of the various features in the proton KE spectrum as a function of τ ,

although the lowest energy band does show a residual beating pattern. Of note

again is the global red shift of the whole spectrum as τ increases from zero to

ca. 20 fs.

5.4. Adiabatic vs. Non-adiabatic Floquet Resonance Dynamics

In the condition of experiment A, as long as τ is larger than the width of

the IR pulse so that no pulse overlap is possible and the IR pulse clearly follows

the XUV pulse, the coherent superposition of vibrational states of H+
2 prepared

by this pump pulse (the Franck-Condon wavapacket) evolves under essentially

field-free conditions, oscillating back and forth and spreading out on the 1sσ+
g

potential, before encountering the IR pulse. The shortness of the IR pulse evokes

a limiting situation (a ”sudden” dissociation limit), where the laser-molecule

interaction merely opens, for a very brief instant, (around the peak of the already

short IR probe pulse), a ”gate” to dissociation at some internuclear distance.

The dissociation yield at any (half-collision) energy, measured essentially by the

squared moduli of the wavepackets evaluated at this gate, thus depends on a

synchronization between the wavepacket and the opening of this gate at the

maximum of the IR field. This synchronization is a result of the coherence

between the various vibrational components of the initial wavepacket and the

dissociation yield necessarily reflects that coherence in this case. The dominant,

coarse-grained behaviour of the KE spectrum as a function of τ , the beating

pattern reflecting the coherence of the initial vibrational wavepacket, i.e. field-

free vibrational states, carries no or little specific information on laser-induced

resonances, as the adiabatic Floquet picture breaks down completely for such

a short IR pulse. The wavepacket/gap synchronization evoked above is rather

reminiscent of the DDQ effect, denoting a dynamical effect rather than a static,

structural one.

Turning now to the case the H+
2 vibrational wavepackets interact with a

longer, 35 fs FWHM, IR pulse (experiment B), a behaviour denoting a somewhat
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more adiabatic Floquet dynamics is expected, and little or no dependence of the

KE spectrum on the time delay τ should be found as long as the XUV pulse

precedes the IR without overlapping. This is what is indeed observed at time

delays τ > 20 fs. The residual oscillatory found in the computed τ -dependent

spectrum indicates that t-non-adiabatic effects are present though, and this is

hardly surprising as the 35 fs IR pulse features strong modulation of this laser’s

intensity over a time scale that is only about ten times the period of the carrier

wave. For τ < 20 fs, the fragment KE spectrum is strongly delay-dependent,

curving up smoothly as τ decreases to reach energy values similar to those

encountered in the experiment A near zero delay.

This dependence of the H+ KE on the XUV-IR delay in this case of the

longer, 35 fs FWHM, IR pulse can be understood in terms of the adiabaticity of

the Floquet dynamics underlying the dissociation processes, and the way that

the IR intensity affects both the preparation and the propagation of the Floquet

components of the wavepackets. More precisely, the IR probe pulse projects the

various vibrational components of the wave packet onto Floquet resonances,

whose widths vary with the intensity of the IR pulse. We recall that these

resonances are of two types: Shape resonances supported by the lower adiabatic

potential defined at the one-photon crossing between the dressed (g, n), (u, n′)

channels and leading to efficient dissociation through the BS mechanism, or

Feshbach resonances, vibrationaly trapped in the upper adiabatic potential well.

When the IR pulse follows the XUV pulse without overlapping (i.e. τ >

20fs) individual field-free vibrational states v+ of the ion are, at first, trans-

ported adiabatically onto corresponding Floquet resonances. Each resonance

gives rise to a characteristic line in the proton KE spectrum. The magnitude

of the KE is determined by the non-perturbative laser-induced modification of

the dressed potential energy curves. On the way towards dissociation, the ion

experiences the increasing in time of the IR pulse amplitude and therefore sees

a lowering of the BS barrier. The lowest barrier height is reached at mid-pulse

time (maximum of intensity), resulting in most efficient dissociation when the

lowest energy shape resonance can still tunnel through before the barrier rises.
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Most protons contributing to the spectrum have a KE of about 0.3 eV cor-

responding to the shape resonance issued from v+ = 8. Higher energy shape

resonances are also dissociative, but are not significantly populated by the XUV

ionization step (through FC mapping of the vibrationless ground state of H2).

This situation is to be contrasted with the case where the IR and XUV

pulses are overlapping (τ < 10fs), i.e the H+
2 ion is prepared at a moment

when the IR field already has an appreciable intensity, and Floquet resonances

defined by that field already differ markedly from field-free vibrational states.

In this case, it can be said that the vibrational states of the ion are shaken

up by this sudden intense IR excitation and are all instantly projected onto a

superposition of shape and Feshbach resonances and these now appear in the

wavepacket with weighting coefficients that may differ noticeably from those

characterizing the FC wavepacket in terms of field-free states. In particular,

higher energy resonances may temporarily be populated and take an important

part in the dissociation step. Afterwards, as shown in Figure (5.4b), the ion

experiences the falling edge of the IR pulse with a rising BS barrier which

quenches the dissociation of low energy shape resonances. High energy over-

the-barrier shape resonances, more populated than in the previous adiabatic

case, are the ones which contribute most to the dissociation. This explains the

blue-shift of the protons KE distribution when τ decreases, bringing the XUV

pulse closer to the maximum of the IR probe, with the increasing role played

by resonances issued from v+ = 9, 10 leading to a spectrum centered at about

0.5 eV .

To obtain a better, quantitative experiment versus theory agreement would

require the relaxation of some of the assumptions inherent in our model. Among

these approximations are a phenomenological description of the XUV ioniza-

tion step[63], the neglect of rotational degrees of freedom [64] and also of the

neglect of such realistic effects as laser focal volume averaging [64]. Neverthe-

less, the analysis just given shows how the dynamics of the two-colour disso-

ciative ionization of H2 under the influence of an XUV+IR pump-probe pulse

sequence depends considerably on the adiabaticity of both the initial Floquet
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Figure 5.1: Measured time-dependent H+ kinetic energy distributions for two-colour XUV+IR

dissociative ionization of H2, with 7 fs IR laser pulses (A) and 35 fs IR laser pulses (B).

wavepacket preparation and the Floquet states’ transport under the IR pulse.

The present work represents a departure from most intense field dynamics work.

Ordinarily, adiabatic laser excitation regimes result in spectral observables with

finely resolved peak structures that can be interpreted in terms of isolated, non-

overlapping resonances [65], while a sudden and strong laser excitation normally

induces overlapping of large width resonances, erasing specific dynamical infor-

mation (leading to structureless and less informative spectral data). Rather, the

two experimental situations described here and their interpretations illustrate

how the richness of the structural determination of molecules, their imaging

and possible control in these situations rest on the sudden (non-adiabatic) or

gradual (adiabatic) character of the strong IR excitations.
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Figure 5.2: (a) Time-dependence of the H+ fragment yield (obtained by integrating the mea-

sured KE distribution between 0 and 1.2 eV) as a function of the XUV-IR delay. The fragment

yield shows oscillations resulting from the motion of the vibrational wave packet on the 1sσ+
g

potential. Clear indications of wave packet de-phasing and re-phasing are observed; (b) Fourier

Transform of the measurement shown in (a), revealing the two-level beats that are responsible

for the observed time-dependence. The inset shows a KE-resolved Fourier Transformation of

the experimental results, and reveals a correlation between the fragment KE release and the

vibrational level occupied prior to dissociation.
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model calculations for two-colour XUV+IR dissociative ionization of H2, making use of a 7 fs

IR pulse (A) and a 35 fs IR pulse (B).
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Figure 5.4: Potential energy curves of H+
2 in a 750 nm laser-dressed diabatic representation

(black solid lines). Are also indicated the lower adiabatic curves resulting from the diago-

nalisation of the radiative interaction for two intensities (I = 3 × p1013 W/cm2 reached at

mid-pulse time, in red dashed line and I = 1013 W/cm2 in doted red line). E7, E8 and E9

represent the kinetic energies issued from v+ = 7, 8 and 9 for the typical XUV-IR delays

(about 100 fs (a) and 0 fs (b)).
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6. Zero-Width Resonances and Exceptional Points in molecular pho-

todissociation

6.1. Introduction

We consider again a (diatomic) molecule with a ground electronic state rep-

resented by an attractive Born-Oppenheimer potential energy curve and a first

excited state represented by a repulsive potential. TheH+
2 model system consid-

ered in the preceeding sections is a typical exemple of such a system. Imagine

first the molecule exposed to a continuous wave (cw) laser field. Within the

Floquet formalism, the photodissociation rate can then be calculated quantum

mechanically by the Fox-Goodwin-Numerov algorithm, as described in section

3.1, for a realistic N = 2p-channel, p-Floquet-block model, but it can also be

obtained with a semiclassical approach whenever the intensity is such as to

justify for a two-channel approximation. The semiclassical approach has been

originally developped to treat predissociation [57] and has been useful in show-

ing that under some particular circumstances the predissociation rate could be

vanishingly small. In the semi-classical theory of predissociative systems, their

occurence can be traced back to the existence of two kinds of zeroth-order states

with energies which come in close coincidence. The disposition of the potential

energy curves in the dressed molecule picture is similar to that of a predisso-

ciative system, and thus can give rise to Zero-Width Resonances (ZWR). It has

been shown [58, 14, 6] that it is indeed possible, for a given wavelength and for

a given resonance issued from a vibrational state of the field-free molecule, to

find a laser intensity at which the resonance width and hence the photodissoci-

ation rate vanishes. We call such an intensity a critical intensity. The flexibility

in choosing laser frequency and intensity conditions to tune predissociation-like

couplings and curve crossing is at the origin of another interesting phenomenon:

Resonance coalescence, i. e.the coincidence of the complex energies and wave-

functions of two resonances, which is attainable for specific laser wavelengths

and intensities, leading to the so-called Exceptional Points (EP)[15]. Such points

are present in many areas of physics, with examples in classical physics [66, 67],
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as well as in quantum physics [68, 69]. We give here a review of these ideas,

starting with the semiclassical expression of the condition for the appearance

of a Zero-Width Resonance, the physical definition of the EP, before illustrat-

ing the two concepts and their use in vibrational control problems. We will

be showing results of two types of calculations: Explicit intensity dependent

resonance energies and widths are obtained by the time-independent approach

detailed in section 3.1 applied to the Floquet N-channel closed-coupled equa-

tions, Eqs. (2.39) or (3.1), N = 2, 4 or 6, corresponding to keeping one, two

or three Floquet blocks. Results of wavepacket calculations for adiabatic, long

pulses will also be shown to verify predictions made based on just the resonance

properties, in particular on those of ZWR and EP. These results are obtained

with the time-dependent wavepacket propagation procedure detailed in section

3.2, mainly in the one-dimensional version, i. e.with just the radial dimension,

ignoring rotational effects.

6.2. Semiclassical theory

Semiclassical theory of predissociation of a diatomic molecule [57, 70] states

very clearly the conditions for the occurrence of Zero-Width Resonances. This

formalism is also applicable to laser-induced resonances given the analogy be-

tween the potentials describing predissociation and those of Figure (6.1) arising

from the dressing of a two-channel molecule by a field. The potentials involved in

the semiclassical treatment are indicated in the right panel of Figure (6.1). For

predissociation the interchannel coupling is a property of the molecule. For in-

tense field photodissociation, the parameters controlling the couplings are those

of the external field and, in principle, can be tuned at will. The semiclassical for-

malism provides analytic formulas for the resonance width. It predicts [57, 70]

that if the energy is such that the two following conditions are simultaneously

satisfied

∫ R0

R+

dR k+(R,E) +
∫ Rt

R0

dRk+(R,E) + χ = (ṽ+ +
1
2
)π (6.1)

and

49



∫ R0

R−

dR k−(R,E) +
∫ Rt

R0

dRk+(R,E) = (ṽ +
1
2
)π (6.2)

with ṽ+ and ṽ some integers, then the outgoing scattering amplitude in the

lower (open) adiabatic channel is zero, with the consequence that the predisso-

ciation is quenched. In Eqs.(6.1,6.2) the energy-dependent wave numbers are

k±(R,E) = ~−1[2M(E − V±(R)]1/2, M being the nuclear reduced mass. R±

are the left turning points of the lower and upper adiabatic potentials V±(R),

whereas Rt is the right turning point of V+(R). These conditions are nothing

but Bohr-Sommerfeld quantization conditions. They mean that there is coin-

cidence of two energy levels: Eṽ+ supported by the upper adiabatic potential,

affected by a phase correction χ, which is −π/4 in the weak coupling limit[70],

and Eṽ supported by a diabatic-like potential presenting a discontinuity and

defined as follows: On the left of the diabatic crossing point R0 this potential

is the lower adiabatic potential, while beyond this point it is the upper adia-

batic potential. For a weak coupling, this is practically the diabatic attractive

potential. We call these two kinds of energies the ”modified” diabatic and adi-

abatic energies respectively. The coincidence condition can then be appreciated

with the expression for the resonance width Γv which emphazises the role of the

proximity of the two kinds of energies [70]:

Γv =
2π
~

e2πν(e2πν − 1)ωω+

(ω+ + (e2πν − 1)ω)3
(Eṽ − Eṽ+)2, (6.3)

where ω and ω+ are local energy spacings of the modified diabatic and adia-

batic potentials. ν is the coupling parameter, which, in a Landau-Zener type of

approximation, is given in the laser induced photodissociation problem, repre-

sented by a single Floquet block, by

ν =
µ2(R0)E2

0

~v|∆F |
, (6.4)

v and ∆F are the classical velocity and the difference of slopes of the diabatic

potentials at the diabatic crossing point R0. µ(R0) is the electronic transition
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moment at the diabatic crossing point and E0 the electric field amplitude of the

laser field.

In the predissociation problem the coincidence can only be accidental since

the potentials and the coupling cannot be modified. For a diatomic molecule

submitted to an electromagnetic field, the wavelength and the intensity of the

field are two external parameters which allow one to produce at will such co-

incidences. This explains the occurrence of Zero-Width Resonances (ZWRs)

in laser induced photodissociation. Such a flexibility can also be exploited to

produce the Exceptional Points (EPs) occuring in this context.

6.3. Zero-Width Resonances and coalescence at an Exceptional Point

Figure (6.2) displays the rates as a function of intensity for two resonances

issued respectively from the field-free vibrational states v = 8 and v = 9, for

a wavelength λ = 255.255 nm. Of note is the existence of an intensity where

the rates, i.e. the imaginary part of the two resonance energies, approach each

other. This signal the existence of an Exceptional Point (EP) in the laser pa-

rameter (intensity, frequency) space. The left panel is a zoom of the curves near

the Exceptional Point. Similar features are found in many other areas of physics

including optics, atomic physics, electron-molecule collisions, superconductors,

quantum phase transitions in systems of interacting bosons, electric field oscil-

lations in microwave cavities, to, more recently, molecular physics[27]. We note

that the rate of the resonance v = 9 can shoot up to very high values. This has

been interpreted [71] as due to the shape character of such resonances, which

in zeroth order (in the channel couplings), are associated with energies marked

as Eṽ in Figure (6.1). The resonances associated with energies marked as E
ṽ+

are interpreted as having a Feshbach-like character. Their widths go asymptot-

ically to zero, since the coupling of the upper diabatic potential with the lower

one decreases as the intensity increases. The right panel of Figure (6.2) shows

that the rate of level v = 8 reaches zero twice. This multiple occurrence of the

zero-width phenomenon has been related to the possibility to produce several

times a diabatic-adiabatic coincidence as the intensity increases [71]. This is
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so because the adiabatic (vibrational) levels goes up faster than the diabatic

ones and therefore a given adiabatic level can cross several diabatic levels as the

intensity increases. It is to be noted that resonance coalescence, i. e.the exis-

tence of an (EP), requires an appropriate choice of both frequency and intensity,

while a ZWR would show up at some critical intensity(ies), irrespective of the

choice of the wavelength, for all resonances of Feshbach type. One must keep in

mind that the classification into shape and Feshbach depends strongly on the

wavelength.

6.4. Vibrational Purification Using ZWR

At λ = 420 nm, the resonances v = 8 and v = 10 can acquire a zero

width as, with increasing intensity, they tend to merge each into some bound

state of the upper adiabatic potential, actually with states given respectively

by quantum numbers ṽ+ equal 0 and 1. In contrast, resonances 7 and 9, which

are of shape type, can acquire very large widths when the intensity increases,

due to the progressive lowering of the barrier of the lower adiabatic potential.

Figure (6.3) shows (lower panel) how the rates of these four resonances actually

vary as an function of time, considered a parameter in correspondence with the

instantaneous electric field of the pulsed laser shown in the top panel. Clearly

the width of resonance 8 goes through zero twice, while the laser intensity never

got large enough throughout the pulse for the rate of resonance 10 to go to zero.

It is interesting to compare at this point results of time-dependent wavepacket

calculations starting from field-free vibrational states with v = 7−9, with those

predicted by accumulating the widths of the above Floquet resonances over time,

assuming a pure adiabatic transport of these resonances under the pulse shown

in Figure (6.3). The observable considered here, the probability for the system

to remain bound, while it adiabatically evolves as a pure Floquet resonance v

(which, at zero-field, correlates with the vibrational state of the same v) under

a pulse of total duration tf is[6]:

Pb(v; tf ) = exp
[
−

∫ tf

o

Γv(t′)dt′
]
. (6.5)
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On the other hand, in the direct time-dependent approach, the survival prob-

ability, i.e., the probability for the system to remain bound at the end of the

pulse, adapting Eq.(4.4), is [6] :

Pbound(v; tf ) =
∑
v′

pbound(v, v′; tf ), (6.6)

where

pbound(v, v′; tf ) =
|〈v′|ψ(v)

g (tf )〉|2

|〈ψ(v)
g (tf )|ψ(v)

g (tf )〉|2 + |〈ψu(tf )|ψu(tf )〉|2
, (6.7)

The sum is taken over all the discrete vibrational levels v′ of state |g〉. ψ(v)
g (t)

is the component of the wave packet on the g channel evolved up to time t

from the field-free vibrational state |v > prepared at time t = 0. Note that

Pbound(v; tf ) actually represents the total bound state population at any time

after tf , since no further decay is then possible, the laser being turned off at

such a time. It is clear that Eq.(6.5) gives a useful approximation for the result

of a full time-dependent wavepacket evolution, [Eq.(6.7)], only if the assumption

of an adiabatic transport of Floquet states is valid.

Figure (6.4) gives an example of such a comparison, considering specifically

the evolution of the molecule out of the v = 7 state, under a λ = 420 nm, I =

0.05×1013 W/cm2, 56 fs long pulse of the same form as shown in Figure (6.3).

An excellent agreement is note. In fact, this agreement holds not only for the

final value of the probability for the molecule to remain bound after the pulse

is over, but also for the survival probability evaluated at any time during the

pulse.

Figure (6.5) further compares the results of the two types of calculations

for a series of resonances at a higher peak intensity of the same pulse. Two

conclusions emerge. First, the adiabatic Floquet formalism is again validated

by the rather good agreement. Second, as expected, the state which is best

protected against dissociation is v = 8, this being clearly related to the fact

that only this state benefits, in this example, from a width which does vanish

at least once while the pulse is on. A different way to check how the different
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states react to the field is to start from a coherent combination of vibrational

functions and to follow in time the evolution of this combination. The initial

wave packet is taken as |ψ̃(t = 0) >= 3−
1
2 [|7 > +|8 > +|9 >]. For the pulse

used for this level-by-level study, shown in Figure (6.3), upper panel, we obtain

now for the probability to find the system remaining bounded at the end of the

pulse, the total value of

Pbound = 0.2960. (6.8)

with the following breakdown into 3 dominant contributions that are

Pbound(7; tf ) = | < 7|ψ̃(tf ) > |2 = 0.0021, (6.9)

Pbound(8; tf ) = | < 8|ψ̃(tf ) > |2 = 0.2852, (6.10)

Pbound(9; tf ) = | < 9|ψ̃(tf ) > |2 = 0.0044. (6.11)

It is thus the resonance issued from the level v = 8 that contributes most to the

survival probability, which is not surprising as the resonance’s width goes twice

through a zero value during the pulse.

A ZWR may also offer an original isotope separation technique. A coinci-

dence of the ”modified” diabatic Eṽ and adiabatic Eṽ+ energies such as those

involved in Eq.(6.3), supposedly ensured for a given molecule-plus-laser system

would no longer hold when one proceeds to an isotopic substitution. The fea-

sibility, selectivity and efficiency of an isotope separation in a mixture of D+
2 /

H+
2 is proven in Figure (6.6) [58]. For a laser wavelength of 120nm we exam-

ined the v = 2 resonance for both D+
2 and H+

2 . A ZWR for D+
2 is reached at

an intensity of about 1.1 × 10 13 W/cm2. It is important to note that while

the width attains a minimum (which is actually a zero) for D+
2 , it acquires a

rather large value, Γ2=600 cm−1 for H+
2 , (the rates of Figure (6.6) are twice the

corresponding widths). We have thus shown that with a specific choice of the

laser wavelength and intensity, D+
2 dissociation may completely be suppressed,

whereas for the same field H+
2 is still strongly dissociative: This is an original

isotope separation scheme by laser-induced purification of D+
2 in a mixture of

D+
2 / H+

2 .
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6.5. Vibrational transfer around an Exceptional Point

We turn now to an exploitation of the other feature of Figure (6.2). We have

seen that it is possible to make a choice of laser intensity and frequency which

produces a near coalescence of two resonance energies. Because of the numerical

character of the exploration, it is difficult to be accurately on the Exceptional

Point. However there is a property of such a point which can be checked even

when its position is known with a limited accuracy: Driving adiabatically the

system along a closed loop encircling an EP should produce a resonance tranfer.

Starting from one of the resonances involved in the EP, the final result is that

the molecule must end up in the other resonance [27, 16, 72]. We illustrate this

property of an EP in Figure (6.7), with the initial state being v = 9. The loop

in the parameter plane is defined by the two relations

λ = 255.25 10−7 + 10 10−7 sin(φ); I = 0.5 sin(φ/2) (6.12)

The wavelength λ is in nm and the intensity I in units of 1013 W/cm2. The

angle φ goes from 0 to 2π. The loop goes around the EP with coordinates in

the (intensity, wavelength) control plane estimated to be λ = 255.25 nm and

I = 0.395 1013 W/cm2 for the pair 8 − 9. The state 8 is finally reached. This

is shown in Figure (6.7). We also demonstrate that this transfer is robust,

i. e.it still holds when adding further channels to the basic two-channel model.

Convergence is reached when, as displayed in Figure (6.7), one Floquet block

is added on both sides of the reference block, that is the block of the single-

photon two-channel model. However near-convergence is already obtained with

only the block above the reference block included. This shows incidentally that

in all these calculations the EP is still within the loop.

Another important consequence of the occurrence of exceptional points is

that on the EP the wavefunctions of the two resonances merge into a single

one. This is illustrated in Figure (6.8) where the wavefunctions issued from 8

and 9 are shown (in dashed and in thin solid lines respectively) at two different

intensities for a wavelength λ = 442.26 nm. When the intensity is rather low
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(I = 0.05 1013 W/cm2), the nodal structure in the lower channel (g) is still

recognizable. The resonance energies are then respectively −6849.89 − i 9.21

cm−1 and −5626.68 − i 68.06 cm−1. For an intensity close to that of the EP,

I = 0.3949 1013 W/cm2, for which the resonance energies are still distinguish-

able and are −5926.52− i 391.58 cm−1 and −5917.11− i 399.21, the two wave-

functions become almost undistinguishable. A very interesting feature, the self-

orthogonality phenomenon, occurs whenever two photodissociation resonances

coalesce. This can numerically be evidenced from the so-called self-overlap σ of

a given resonance solution Ψ(R, t) evaluated as [27]:

σ =
n=+∞∑
n=−∞

∫ ∞

0

dR

[ (
ψg,n(R)

)2

+
(
ψu,n(R)

)2
]
. (6.13)

It is important to note that no complex conjugate of the Floquet components

ψg,u(R) appears here in the implied scalar-product, consistently with the defi-

nition of the non-hermitian c-product (see Ref. [73, 74]). The self-orthogonality

phenomenon cannot be described using the standard hermitian definition where

the usual complex conjugates of ψg,u(R) would appear. The corresponding val-

ues are given in Figure (6.7) where one observes a significant decrease of σ8 and

σ9 near the EP.

The occurence of Zero Width Resonances and of Exceptional Points in the

context of laser-induced photodissociation can be exploited in various ways. We

have shown how Zero-Width Resonances can be beneficial in purification scenar-

ios. We have also shown that Exceptional Points can be exploited in vibrational

transfer scenarios. Such scenarios could ultimately be applied for vibrational

cooling strategies by depleting all vibrational levels except the ground (v = 0)

one.
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Figure 6.1: Diabatic (left panel) and adiabatic (right panel) potentials of H+
2 for a wavelength

λ = 440 nm and a field intensity 1013 W/cm2. The excited state potential has been lowered

by ~ω. Eṽ and Ev+ are representative of energies associated with the modified diabatic and

the modified upper adiabatic potentials respectively.

Figure 6.2: The rates versus intensity for the resonances issued from the vibrational states

v = 8 and v = 9 for a wavelength λ = 255.255 nm. Th left panel zooms the region showing how

the rates approach each other for an intensity I = 0.395 1013 W/cm2. The rigth panel shows

that at two intensities the rate passes through a zero value. An amplification is needed because

when the intensity increases, the coupling between the two adiabatic potential decreases and

the bound states of the upper adiabatic potential become very good approximations.
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Figure 6.3: Time variation of the rates of various resonances followed adiabatically during

the pulse shown in the upper panel. The wavelength is λ = 420 nm. The mid-pulse intensity

I = 0.3 1013 W/cm2 is large enough for the width of the resonance v = 8 to pass twice

through a null value at times depicted by the vertical arrows of the lower panel, but not large

enough for resonance v = 10 to reach a zero width. Resonances v = 7 and v = 9 belong to

the class reaching high values of the rates because of their shape nature.

Figure 6.4: Time variation of the probability to remain bound for the resonance labelled v = 7.

The wavelength is λ = 420 nm. The mid-pulse intensity is I = 0.05×1013 W/cm2. The pulse

duration is 56 fs. The dashed curve is for the adiabatic Floquet treatment while the solid

curve is for the time-dependent calculation.
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Figure 6.5: Comparison of survival probabilities for the resonances 7 to 10 calculated either

from a time-dependent wave packet propagation or from the adiabatic Floquet formalism

with the same laser parameters as in Figure (6.3) and for a light pulse duration of tf =

56 fs, corresponding to about 40 optical cycles. For each initial state, the wave packet

propagation result is given by the left histograms (full boxes), while the adiabatic Floquet

result is represented by the right histograms (hatched boxes). Only the state 8 shows a large

survival probability because, as shown on Figure (6.3), its rate passes twice through a null

value.

Figure 6.6: Rates as a function of laser intensity for D+
2 (dotted line) and H+

2 (solid line).

The laser wavelength is taken as 120 nm and the resonance under consideration is v=2
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Figure 6.7: Transfer from state 9 to state 8 when following adiabatically the resonance issued

from 9 around the exceptional point where the resonances energies from 8 and 9 are merging.

The paths are as follows: thin solid curve, the 2-channel model; thin dashed curve, 4 channels,

with inclusion of the two lower channels of Figure (6.1); thick dashed curve, 4 channels, with

inclusion of the two higher channels of Figure (6.1); thick solid curve, 6 channels, with inclusion

of all channels of Figure (6.1).

Figure 6.8: The resonance wave functions and their corresponding self-overlaps at two different

intensities I = 0.05 1013 W/cm2 (left panels) and I = 0.3949 1013 W/cm2 (right panels). Only

the real part of each channel wave function is displayed.
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7. Conclusion

Intense laser-induced molecular dissociation is definitely one of the most

challenging applications of Quantum Mechanics where theoretical models and

their computer-based numerical simulations may help in a quantitative under-

standing and prediction of experimental discoveries. This has been exemplified

in this review on some simple systems. Although the low-dimensional models

considered may appear limited, the nature and dynamics of the unstable states

(resonances) and the basic mechanisms associated with them are of wider ap-

plication range than evoked, and particularly in reactivity control. Strong field

mechanisms, specifically barrier suppression and dynamical quenching in the IR

regime or bond softening and vibrational trapping in the UV regime, are basic

tools for a detailed interpretation of experimental observations made on ATD

spectra. By adjusting adequately the laser’s characteristics such as its intensity,

frequency, polarization, pulse shape and phase, one can bring into competition

chemical bond softening and/or hardening mechanisms, to obtain intense laser

control scenarios of photochemical processes. Advantage can be taken of such a

competition to direct the chemical reaction towards a given channel, involving

the breaking of a given bond, while the others are stabilized by laser-induced

trapping or quenching mechanisms.

It is important to note that control strategies based on resonances and basic

mechanisms present interesting complementarities when compared to optimal

control schemes, with the advantage for the formers of a thorough understand-

ing of the dynamics on one hand, and robustness and transposability, on the

other hand. More precisely, this complementarity can be discussed referring to

three observations: (i) there is no single solution arising from optimal control

scenarios (not only different criteria, but also different sampling spaces for the

laser parameters to be optimized would lead to different results); (ii) a careful

study of the laser-induced dynamics can help to the identification (or guess)

of some basic mechanisms leading to the desired observable in a very robust

way (not a black-box numerical approach); (iii) by appropriately building the
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targets and delineating the parameter sampling space, we can help the optimal

control scheme to take advantage of the mechanisms and specific behaviors of

the resonances. Finally, we emphasize again that we refer to basic mechanisms

or resonances only for interpretation or control purposes, or when describing

strictly time-adiabatic processes, all calculations dealing with the ”exact” reso-

lution of the time-dependent Schrdinger equation.

The opposition of sudden excitations and adiabatic dynamics provides other

ways of controlling and/or imaging dissociative ionization processes. This has

been illustrated by quantitative theoretical interpretations of observations made

in the XUV + IR pump-probe experiment discussed in section 5, where the imag-

ing and/or possible dynamical control of the dissociative ionization of H2 rest

on a partial breakdown of the widely common assumption of adiabatic trans-

ports of individual, isolated resonances during the laser-induced dynamics. On

the other hand, it is rather within such an adiabatic regime, associated with

a long pulse duration, that one encounters counterintuitive situations due to

highly non-linear behaviors in the transports and decays of single resonances

induced by strong fields as exemplified by ZWRs, denoting situations where a

molecule irradiated by a very strong field is stabilized with respect to dissocia-

tion. Advantage can be taken from a ZWR that is adiabatically connected with

a given field-free vibrational state, as one can manage to bring all population

in other vibrational states to dissociation, leaving residual bound population

in the ZWR under consideration: This constitutes a vibrational purification

control scheme. In the same spirit, it is possible to proceed to a separation

of different chemical species (two isotopes, for instance) in a mixture merely

by dissociating certain species while stabilizing others through a ZWR reached

within the same laser excitation, the result being an enrichment of the mixture

in the stabilized species.

At the frontier of non-adiabaticity (i. e. of the breakdown of the single res-

onance adiabatic transport approximation) lie the EPs that can be reached by

an appropriate combination of laser parameters (frequency and intensity). A

coalescence of two resonances adiabatically connected with two different field-
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free vibrational states occurs at an EP. With a loop in the (frequency, intensity)

plane encircling the EP, such a resonance coalescence situation is produced.

As the loop is followed adiabatically, the system switches from a single reso-

nance connected with a given vibrational level to a second resonance, and ends

up in a final, different vibrational level when the laser is turned off: This is

a vibrational transfer control scheme. Combining ZWRs and EPs and using

appropriately chirped laser pulses, it is easily realized how a molecular cooling

control objective can be attained by depleting all vibrational levels except the

ground (v=0) one.

An important issue concerns the robustness of the control strategies dis-

cussed presently with respect to the introduction of rotational degrees of free-

dom and additional electronic states. We have not addressed this issue explicitly

here, but studies have been made, e.g. on rotational effects on the existence of

ZWRs, and give reassuring results[6]. Even if there may be some efficiency loss

upon inclusion of further channels in the model, the general strategies seem to

resist to these additional degrees of freedom. Laser-induced molecular orien-

tation, manipulation and imaging are among the future goals of such control

schemes based on laser-induced resonances and associated processes.
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