

SEMINAIRE ISMO

Berenger GANS

ETH Zürich Laboratorium für Physikalische Chemie, Zürich Switzerland

Analyse de la structure rovibrationelle des cations CH_3I^+ et HC_2I^+ par spectroscopie photoélectronique PFI-ZEKE.

Les spectres photoélectroniques PFI-ZEKE (pulsed-field-ionization zero-kinetic-energy) des transitions X^{+} $^{2}E_{3/2} \leftarrow X$ $^{1}A_{1}$ de l'iodométhane (CH $_{3}I$) et des transitions X^{+} $^{2}\Pi_{3/2} \leftarrow X$ $^{1}\Sigma^{+}$ de l'iodoacétylène (HC $_{2}I$) ont été mesurés en utilisant un rayonnement laser à haute résolution dans le domaine de l'ultraviolet du vide.

 CH_3I^+ et HC_2I^+ présentent un fort couplage spin-orbite car leurs premiers seuils d'ionisation correspondent au départ d'un électron localisé sur l'atome d'iode. L'étude des premiers états vibroniques des cations CH_3I^+ et HC_2I^+ par la spectroscopie photoélectronique à haute résolution permet d'obtenir des informations sur la compétition entre les interactions spin-orbites et les interactions vibroniques telles que les effets Jahn-Teller (dans le cation CH_3I^+) et Renner-Teller (dans le cation HC_2I^+).

* * * * * *

Mardi 31 janvier 2012 à 11 h 00

Bât. 210 - Amphi 1 (2ème étage) Université Paris-Sud 91405 ORSAY Cedex